

INSIDE CP/M

A Guide for

Users and
Programmers
with CP/M-86 and MP/M 2

David E. Cortesi

INSIDE CB/'M

A Guide for

- Users and
Programmers
with CP/M-86 and MP/M 2

To Marian

These terms are trademarks of Digital Research, Incorporated:
CP/M, CP/M-80, CP/M-86, MP/M, MAC, and RMAC.
The term Z80 is a trademark of the Zilog Corporation.

Copyright © 1982 CBS College Publishing
All rights reserved.

Address correspondence to:

383 Madison Avenue, New York, NY 10017

Library of Congress Cataloging in Publication Data

Cortesi, David E.
Inside CP/M: a guide for users and programmers with
CP/M-86 and MP/M-2.

Includes index.
1. CP/M (Computer program) [. Title.
QAT76.6.C665 001.64 82-2953

ISBN 0-03-059558-4 AACR2

Printed in the United States of America
Published simultaneously in Canada
345 016 987635

CBS COLLEGE PUBLISHING
Holt, Rinehart and Winston
The Dryden Press

Saunders College Publishing

Preface

This book is both a guide and a reference manual for CP/M. an operating system for
small computers. The book has two sections. The Tutorial presents the basics of the
management, use, and programming of a small computer and CP/M. In the Reference.
CP/M information is organized for quick access by programmers and users.

The Reference Section

The Reference section contains the information that CP/M users and programmers need
every day. The commands are displayed in alphabetical order, each with its syntax, its
operation, and suggestions for its best use. The BDOS service requests and BIOS entries
are presented in numerical order, each with a concise explanation of its function and
suggestions for its use. The operation and syntax rules for the two CP/M assemblers are
shown, and all of the assembler directives are laid out in alphabetical order with
descriptions and examples. A number of summaries and tables are included.

The Reference section is large, but a lot of thought has gone into its organization.
The reader should find that, with only a little practice, the answer to any question about
the day-to-day use of CP/M can be found in a few seconds.

The Tutorial Section

CHOOSING AN AUDIENCE. In the Tutorial I've attempted to teach the use and program-
ming of CP/M. Before I could do so I had to imagine what my readers would be like and
what they would want to know. I made the comfortable assumption that the readers
would be adults who are already committed to using a computer and motivated to learn
about CP/M. Under that assumption I could dispense with gee-whiz rhapsodies on the
computer age and could be free to treat the problems of computer use equally with the
advantages.

I could safely make no other assumptions. The success of CP/M and the strong
public interest in small computers ensure that among the readers there will be people
having every degree of computer experience, from complete novices to experienced
programmers. | had to design the Tutorial so that it would say something useful to most

vi

Preface

readers, and I had to resign myself to the fact that no one reader would be interested in all
of it.

CHAPTERS 1-4: ADDRESSING THE NOVICES. That a reader is a novice to computers
does not imply that he or she is a novice in all things. On the contrary, I picture my
novices as bright, agressive business and professional people, uncomfortable at being
cast in the role of greenhorn and eager to get on top of this new subject. Chapters 1
through 4 are addressed to these readers. There I introduce terms and buzzwords and
describe the parts of a computer system. My aim is to arm the novice to deal with
salespeople, consultants, and other jargonauts, and to prepare him or her to make
rational purchasing decisions.

CHAPTERS 5-8: ADDRESSING THE UsERs. Chapters 5 through 8 introduce the CP/M
commands that nonprogrammers need. Here I assume that the reader is interested in
putting the system to use and wants no more explanation of how it works than is
absolutely necessary to make sense of its responses. I present the commands as a series
of exercises that the reader is expected to carry out at the keyboard, with a running
discussion of what is being done and when it is useful.

CHAPTERS 9-12: ADDRESSING NEW PROGRAMMERs. The day is long past when the
owner of a small computer was of necessity a programmer as well. Thus I expect that
when the subject turns to programming, a good part of the audience will head for the
door. Those who stay will have to learn the fundamentals of programming from other
books. However, Chapters 9 through 12 cover the things that a new programmer needs to
know about CP/M, things that aren’t likely to appear in books devoted to BASIC,
Pascal, or assembly language.

CuaPTERS 13-15: For PROGRAMMERs. In Chapter 13 the Tutorial finally reaches the
point from which the official CP/M documentation departs: programming /O operations
in assembly language. Those who want to write systems programs will find in Chapters
14 and 15 discussions of the directory, space management, and system generation.

Scope of the Book

CP/M is available in several versions, and in variant forms for different hardware.
Fortunately, the differences between one CP/M variant and another are very small, so
most of this book applies correctly to most systems. However, the book was developed
on, and for, CP/M 2.2. The reader should know which versions are covered and to what
degree.

CP/M 1.4.] omitted specific coverage of CP/M prior to release 2. Its inclusion would
have muddled the Tutorial with many exceptions and special cases. Although CP/M 1.4
can still be ordered, most systems are two years old at this writing; presumably its users
have developed their own information sources by now.

Preface

CP/M-86. The BDOS and BIOS entries unique to CP/M-86 are included in the
Reference. Digital Research’s wise decision to make CP/M-86 compatible with
CP/M-80 ensures that the first eight Tutorial chapters, and most of Chapters 13 and 14,
apply correctly to it. It wasn’t possible to include any programming examples for
CP/M-86.

MP/M. Several subjects had to be omitted, or an already bulky book would have been
completely out of hand. MP/M is included only as notes at the points where a CP/M
operation works differently, or is not supported, in MP/M. Tutorial Chapters 1 to 13
apply to MP/M, but there is more to that system than could be said here. The unique
MP/M commands and the MP/M XDOS services could not be included.

MP/M 2. The latest version of MP/M includes a number of new services for the
programmer. All of these new file-system features have been included in the Reference
section, so that a CP/M programmer can prepare compatible programs. When the
long-awaited CP/M 3 appears, it will probably support these services as well.

VARIANT HARDWARE. CP/M has been adapted to computers it wasn't originally meant
for, notably the TRS-80 line and the Apple. The examples in this book were developed
on an S-100 bus system with 64 KB of storage. All the command examples should work
as shown on any hardware variant. The example programs may need to be assembled at a
different origin. This can be accomplished with a one-line change in the CPMEQU.LIB
introduced in Chapter 12.

Acknowledgments

I'am indebted to a number of people for their help on the book. The publisher’s reviewers
made several productive suggestions. Scott Gamble, Paul Brest, and Steve Fields
submitted graciously to my fumbling attempts to interview them. I am especially
grateful to Ben Mason of California Computer Systems for a thorough technical review.
His input made Chapters 14 and 15 much better and deeper. My wife assisted the book in
ways too numerous to mention.

My own CP/M system, which acted both as word processor and as guinea pig for
my experiments, performed flawlessly through ten months of heavy use. For that I feel
some gratitude toward the manufacturers of its components: CCS, Diablo, Godbout,
Heath and Morrow.

David E. Cortesi

Vil

Contents

Preface

Part One A TUTORIAL FOR USERS AND PROGRAMMERS

Chapter 1 COMPUTER FUNDAMENTALS
THE COMPUTER: AN ORGANIZER

THE FIRST LEVEL: HARDWARE
The Chip
Input and Output
Instructions

THE SECOND LEVEL: A PROGRAM
HARDWARE VERSUS SOFTWARE

THE THIRD LEVEL: AN OPERATING SYSTEM
File System and File Storage
Working Storage
Programs and Programming
Programming Languages
Interpreters and Compilers
The Lure of Programming
Program Efficiency

THE FOURTH LEVEL: APPLICATIONS

FURTHER READING
Computer Magazines
Computers in Society
Managing Computers
Programming
Computer Architecture

NN NS G0 00N N1 SN Unn bl B

ix

Contents

Chapter 2 HARDWARE FOR CP/M

COMPUTER PACKAGING

ELECTRONIC PARTS
The Processor
Busses and Boards

THE TERMINAL
Human Factors of the Terminal
Hardware Factors of the Terminal

DISK STORAGE
Diskette Storage
CP/M’s Use of Diskettes
Diskette Variations
Diskette Compatibility

HARD DISKS
Hard-Disk Technology
The Uses of Hard Disks

CENTRALIZED DISKS

PRINTERS
Typewriter Printers
Matrix Printers
Other Printers
Printer Interfaces

OTHER I/O DEVICES

Chapter 3 SOFTWARE FOR CP/M

CATEGORIES OF SOFTWARE
VERSIONS OF CP/M

THE MONITOR
The Console Command Processor

FILE COMMANDS
UTILITIES
LANGUAGE TRANSLATORS

APPLICATIONS
Word-Processing Programs

14

15

16
16
18

20
20
22

24
27
28
29

31
31
32

32

33
33
35
37
37

38

39

40
40

41
43

45

45
45

Electronic Worksheets
Other Application Packages

SUMMARY

Chapter 4 MANAGEMENT PROBLEMS

BUYING HARDWARE AND SOFTWARE
Shopping for Hardware
The Importance of Advice
Purchasing Software
Evaluating Software

SETTING UP THE COMPUTER WORKPLACE
The Terminal
Diskettes and Drives
The Processor
The Printer

PLANNING FOR DISASTER
File Backup
Insurance

DATA SECURITY
Planning for Security
Computer Crimes

Chapter 5 COMMON COMMANDS

LEARNING THE KEYBOARD

INITIALIZING CP/M
The First Time
Initializing with Reset
Initializing with Control-c

THE COMMAND PROCESS
Typing Commands
Uppercase and Lowercase
INTRODUCING THE FILE SYSTEM
Filerefs: Naming Files
Introducing DIR
Ambiguous and Explicit Filerefs
DIR with Ambiguous Filerefs
Using Drivecodes

Contents

46
46

47

48

49
49
50
50
51

52
52
53
53
53

54
54
54

55
55
56

57

58

59
59
60
61

61
62

65
65
67
67
68
68

Xxi

Xii

Contents

The Drivecode Command

The STAT Command for File Information

The REN Command to Rename Files
The ERA Command to Erase Files
Protecting Disks

STAT to Change File Status
Summary of STAT

DISPLAYING FILES
The TYPE Command
Stopping OQutput with Control-s
Console Copy with Control-p

Chapter 6 PIP and 1/0O DEVICES

FORMS OF THE PIP COMMAND

PIP FOR DISK FILES
Copying Single Files
Copying Groups of Files
PIP Options for Disk Files

OTHER 1/O DEVICES
The Logical Devices
The Physical Devices
STAT for I/O Device Information
Making an Assignment Chart
STAT for Device Assignment
Logical and Physical Devices in MP/M

PIP FOR LOGICAL DEVICES
PIP Options for Formatting
PIP Options for Serial Transfer
PIP Summary

Chapter 7 USING ED

EDITOR CONCEPTS
The Edit Session
File Handling
Types of Editors

USING ED
An Initial Session
Controlling the Edit Session

70
71
72
73
74
76
77

77
78
78
79

81

82

82
82
84
85

86

87
89
89

92

92
93
96
98

99

100
100
100
101

102
102
103 —

The Form of ED Commands
Controlling Files and Working Storage
Displaying Text

Controlling Line and Character Pointers
Inserting and Deleting Text

Text Substitution

Searching for Text

Macro Commands

Chapter § LIBRARY ORGANIZATION AND SUBMIT

DISKETTE CARE
Diskette Hazards
Diskette Accessories

PREPARING A NEW DISKETTE
Mechanical Preparation
Formatting
SYSGEN
Receiving Distribution Diskettes

ORGANIZING THE LIBRARY
Categorizing Diskettes

ORGANIZING A HARD DISK
The User Code
Hard-Disk Backup
Organizing Under MP/M

AUTOMATING WITH SUBMIT AND XSUB
The SUBMIT Command
SUBMIT Parameters
The XSUB Command
Uses of SUBMIT

Chapter 9 THE REPRESENTATION OF DATA

MEANING IS A HUMAN CONCEPT

BINARY DATA
Binary Units
Number Systems

REPRESENTATION OF NUMBERS
Binary Integers
Binary-Coded Decimal
Floating-Point Representation

Contents

105
106
107
109
111
113
114
115

116

117
117
117

118
118
119
119
121

122
122
124
125
126
126

127
127
129
130
132

134

135

135
135
135

137
137
138
138

Xiii

xiv

Contents

REPRESENTATION OF CHARACTERS: ASCII
Printable Characters
Control Characters

WORKING STORAGE

Chapter 10 THE FILE SYSTEM

CONTROL OF THE DISKS
Physical Organization

DISK ORGANIZATION
The STAT DSK: Display
Reserved Tracks and Data Tracks
The File Directory
Allocation Blocks
Directory Entries and Extents
File Allocation
The STAT File Report

SEQUENTIAL FILE ACCESS
Creating the File
Writing to the File
Completing the File
Reading the File

DIRECT FILE ACCESS
Input with Direct Access
Output with Direct Access
STAT and Direct Access

TYPES OF FILES
ASCII Files
Binary Files

Chapter 11 LANGUAGE TRANSLATORS

LANGUAGES AS TOOLS

INTERPRETERS VERSUS COMPILERS
Using an Interpreter
Using a Compiler
Partial Compilers
Matched Translators

THE REPRESENTATION OF PROGRAMS

139
141
142

145

147

148
148

149
149
150
150
150
151
152
153

154
154
154
156
156

157
158
158
158

159
159
160

161

162

162
162
163
164
164

164

JUDGING A LANGUAGE

TRANSLATOR CASE STUDIES
tiny ¢
Microsoft Disk BASIC 5.0
CBASIC
Pascal/Z
Digital Research PL/I

Chapter 12 ASSEMBLY LANGUAGE PROGRAMMING

EVALUATING ASSEMBLY LANGUAGE

USING ASSEMBLY LANGUAGE
The Assembly Process
Making a .COM File
Relocating Assembly

ASSEMBLER FEATURES
Conditional Assembly
The Macro Concept
Macro Libraries

CP/M PROGRAMMING CONVENTIONS
Standard and Nonstandard Addresses
Low Storage
CCP Services for Command Programs
Program Entry and Exit

DEBUGGING AIDS
Using DDT
Applying Patches

Chapter 13 BDOS SERVICES FOR APPLICATIONS

SERVICE REQUEST CONVENTIONS

CONSOLE INPUT REQUESTS
Service 1: Get a Byte
Service 10: Get a Line
Service 11: Console Status
The CISUB Library

CONSOLE OUTPUT REQUESTS
Service 2: Write a Byte
Service 9: Write a String
The COSUB Library

Contents

166

167
167
168
169
170
170

172

173

173
173
174
175

177
177
178
181

183
183
183
186
187

189
189
189

193

194

195
196
196
197
197

199
199
200
200

Xy

xvi

Contents

FILE-HANDLING CONCEPTS
The Idea of the Default Drive
Service 25: Get Default Drive
Service 14: Set Default Drive
The File Control Block

FILE INPUT REQUESTS
Service 15: Open Existing File
Opening the Default FCB
Service 26: Set Buffer Address
Service 20: Sequential Read
End of File
The TF Command

FILE OUTPUT REQUESTS
Deleting an Existing File
Service 22: Make a File
Service 21: Sequential Write
Service 16: Close a File
The FT Command
The SEQIO Library

DIRECT ACCESS
Service 34: Direct Write
Files with Holes
Service 33: Direct Read
A Hazard of Direct Input
Service 40: Write with Zero Fill
Service 36: Get Direct Address

Chapter 14 SERVICES FOR SYSTEM PROGRAMMING

TWO USEFUL LIBRARIES
The HEXSUB Library
The DPSUB Library
The XCMD Program

THE DISK DIRECTORY
Reviewing the Directory

CONTENTS OF DIRECTORY ENTRIES
The User Code
The Attribute Bits
The Extent Number
The Record Count
The Data Map

202
202
202
202
202

204
204
205
205
206
206
206

207
207
208
209
209
210
212

212
212
213 —
213
213
214
214

215

216
216
216
216

218
218

220
221
221
223
224
224 —

THE SEARCH SERVICES
Service 17: Search First
Service 18: Search Next
Using the Search Requests

DISK SPACE MANAGEMENT
Fundamental Parameters
The Disk Parameter Block
A Hypothetical Disk
Activating a Drive
Space Allocation

DISK FORMATTING AND THE DIRECTORY
The Directory High-Water Mark
The Reason for E5h
The Fill Character Dilemma

Chapter 15 THE BIOS AND SYSTEM GENERATION

THE BIOS
The BIOS Interface—CP/M and MP/M
The BIOS Interface—CP/M-86

THE BIOS START FUNCTIONS
The Cold Start Entry
The Warm Start Entry
The CCP’s Autocommand Entry

THE BIOS DISK FUNCTIONS
Disk Selection
Track Addressing
Record Addressing
Reading and Writing

THE BIOS SERIAL I/0 FUNCTIONS
Functions for Logical Devices
BIOS Support of the Physical Devices

CUSTOMIZING THE BIOS
Changing the Storage Size
Changing the Disk Functions
Changing the Serial 1/O Functions
Testing BIOS Changes

SYSTEM GENERATION
The Bootstrap Tracks
The MOVCPM File

Contents

224
225
225
225

229
229
232
237
238
239

241
241
241
241

243

244
244
244

246
246
247
248

248
248
249
250
252

258
258
260

261
261
263
264
265

265
266
267

Xvii

xviii

Contents

The MOVCPM Command

Saving the Relocated CCP and BDOS
Adding the BIOS

The SYSGEN Command

INDEX

Part Two A REFERENCE FOR USERS AND PROGRAMMERS
REFERENCE

Summary Form and Use of Filerefs

Summary Effects and Use of Ambiguous Filerefs
Conventional File Types in CP/M and MP/M
Control Characters Recognized by CP/M and MP/M
Physical Device Names

I/O Device Assignment Charts

COMMANDS
Topical Summary of CP/M Commands
Alphabetized CP/M Commands

ASCII, HEX
ASCII Code in Hex and Decimal
ASCII Control Characters
8-bit Hex to Decimal and Binary, with ASCII
16-bit Hex to Decimal, Positive and Unsigned Values
16-bit Hex to Decimal, Signed Negative Values

8080, Z80
8080/8085 Instruction Set Functional Tableau
780 Instruction Set Functional Tableau
780 Assembler Syntax—Cross-Reference

ASM, MAC
ASM Command
ASM Error Message
Statement Formation in ASM
Elements of ASM Expressions
MAC Command
MAC Command Parameters
MAC Error Messages
Statement Formation in MAC
Elements of MAC Expressions
Macro Substitution in MAC

268
269
269
271

283

291

293
294
295
296
298
299

301
302
305

317
378
380
383
386
387

389
390
392
394

397
399
400
401
402
405
406
407
409
410
412

ASSEMBLER

BDOS

NDOS

BIOS

MAPS

Topical Summary of Assembler Directives
Alphabetized Assembler Directives

Topical Summary of BDOS Services
Numeric Index of BDOS Service
Summary of BDOS Error Codes
BDOS Service Requests in Sequence

Summary of NDOS Services
NDOS Service Requests in Sequence

Topical Summary of BIOS Entry Points
BIOS Entry Points in Sequence

CP/M-80 Storage Map with Comments

CP/M-80 Low Storage Map with Comments

FCB and Directory Entry Map with Comments
Directory Label Map

Extended File Control Block Map

Disk Parameter Header Map with Comments

Disk Parameter Block Map with Comments

CP/NET Slave Configuration Table Map with Comments

Contents

415
416
419

447
449
452
454
457

529
531
533

539
541
543

557
558
560
562
564
565
566
568
570

xix

Part One

A Tutorial for
Users and
. Programmers

Chapter 1

Computer
Fundamentals

THE COMPUTER: AN ORGANIZER

THE FIRST LEVEL: HARDWARE
The Chip
Input and Output
Instructions

THE SECOND LEVEL: A PROGRAM
HARDWARE VERSUS SOFTWARE

THE THIRD LEVEL: AN OPERATING SYSTEM
File System and File Storage
Working Storage
Programs and Programming
Programming Languages
Interpreters and Compilers
The Lure of Programming
Program Efficiency

THE FOURTH LEVEL: APPLICATIONS

FURTHER READING
Computer Magazines
Computers in Society
Managing Computers
Programming
Computer Architecture

[
S e OO0 S Ut b B

)
[—]

el T e —
T B B b e

Computer Fundamentals

This chapter is intended for people who are about to work closely with a computer for the
first time. You might own a small business and be shopping for a solution to your
bookkeeping problems. You might be a writer exploring the much-touted advantages of
the computer as a word processor. You might be an employee whose boss has given you
the dubious distinction of becoming a computer operator for the machine she is about to
purchase.

Are you anxious about it? New things make everyone anxious. Anxiety about
meeting a computer will stem from two things: you don’t know what the machine may
demand from you. And worse, you don’t know what questions to ask or what words to
use in asking them. People who know computers use unfamiliar terms and seem to
become tongue-tied when you ask for explanations. They prefer to clatter out a cryptic
line on a keyboard, point to the screen, and say, “There, see?"—as if they'd clarified
something.

The aim of this chapter is to give you a set of concepts that are common to all small
computers and the words that are used to name those concepts. Our space is too limited
for a complete course in computers, but we'll perform the introductions. There are
suggestions for further reading at the end of the chapter, there is the remainder of this
book, and there are people to whom you can talk. Once you've added to your vocabulary
the terms we’ll define here, you’ll be able to read, and to ask, and to understand the
answers.

THE COMPUTER: AN ORGANIZER

Our first definition is necessarily that of the word computer. The word is misleading if
you haven’t been associated with these machines, for it focuses your attention on
computation, and that is not the main use of a computer. The French word is a better
description of the functions of the machine. It is ordinateur, meaning that which puts
things in order, a sequencer, arranger, or categorizer. Most computers spend most of
their time sifting, sorting, selecting, and finally displaying things. A computer is a
machine that arranges things according to some pattern, then either displays the arrange-
ment or saves it.

THE FIRST LEVEL: HARDWARE
At its most fundamental level a computer arranges patterns of electric pulses. The form

of this arranging is defined by the machine’s wiring, which these days is usually
embodied in tiny lines etched on a small piece of silicon: the famous chip.

The Chip

The fact that the integrated circuits, or chips, that make up a modern computer are so
very tiny should not be important to you. After all, why should you care what size a

The First Level: Hardware

computer is, so long as it does the job? It is marvellous that such complex patterns can be
written so small, but the practical benefit of this achievement is not in the size of the
machine but in its price. Because they are so small, and because they are made by
automatic equipment, modern computers have become inexpensive. Because computers
cost so little, people who would have passed their lives without seeing a computer now
have one as a component of a microwave oven or as a toy for their children. When
surrounded by more expensive auxiliary devices, the computer becomes an office
assistant or an aide to the professional person.

Input and Output

The flake of silicon is helpless and useless without some connection to the rest of the
world. Before a computer can move from being an arranger of pulses on a chip to being
an assistant (or an oven controller), it must be linked to its environment.

In the jargon of the trade, the links are called input-output devices. This is usually
abbreviated to I/0O devices.

Almost any physical effect can be encoded as an electric signal. Think of a tape
recorder, which converts sound waves to electrical patterns and records those patterns in
the coating of the tape. A computer manipulates patterns of electric pulses. If some
physical effect can be coded as pulses of a compatible sort, then the computer can receive
and manipulate them. These operations are always spoken of from the viewpoint of the
computer, and so the receipt of a signal from outside the chip is called an input (of data to
the machine).

A tape recorder can go both ways. It can play its tape back, thus converting the
stored patterns to sound again. And if there is some device attached to the computer that
will convert its patterns into a physical effect, the computer can make something happen
outside itself. This act is called an ouspur (of data from the computer).

Since almost anything can be coded electrically, and almost anything can be
arranged for electrical control, with the right set of /O devices a computer can be
inserted into almost any process. One could imagine a Rube Goldberg contraption of
motors and levers that would allow a computer to paddle a canoe. It might not be useful,
and it would be too expensive as a joke, but it could be done.

The computers that use CP/M, the subject of this book, never do anything as
dramatic as paddling a canoe or as domestic as timing a roast. They are equipped with
/O devices whose purpose is the storage or display of letters and numbers. These
computers spend their time receiving input that represents letters and numbers and
sending output that also represents letters and numbers, differently arranged.

Instructions

The ways in which a computer can arrange pulses are strictly limited by the circuits
engraved on its chip, and they are few and simple. No computer can do very much, but
what it does, it does very quickly. Some of the sequences defined for a computer are of

Computer Fundamentals

this form: Take a train of pulses from here on the chip, combine them with pulses from
there, and put the result over there. By specifying the particular ways in which the pulses
are combined, the computer’s designer can create sequences that perform simple
arithmetic. Other sequences just copy data from place to place on the chip, still others
compare pulses and produce a signal that says, in effect, “This pattern of pulses,
considered as a number, is greater or less than that one.”

Each simple operation designed into the computer is called an instruction; all
together they constitute an instruction set. Each instruction can be called into play by an
operation code, which is simply a number. Thirteen, when received by the computer,
might cause it to multiply two numbers, whereas 36 might mean “receive input from that
device.” A machine’s instruction set is sometimes called its machine language. This is
the first level at which we can view the computer: as a chip, pulses, and instructions.

THE SECOND LEVEL: A PROGRAM

The second-level view of the computer becomes apparent when we provide it with a list
of operation codes and watch it run through the list, doing one after another very rapidly.
The usefulness of such a list arises from the fact that the computer can jump around in the
list on the basis of the outcome of some instruction. The list can say, in effect, “If the sum
of two numbers is zero, do these instructions; if not, do those.” Or it can say, “Repeat
this series of instructions until a certain condition is true.” Such alistis called a program.
The power of the computer, and all its effects on society, come about because it can carry
out a program, and because the program can branch (make a choice) and loop (repeat
some number of times). Without a program the machine has no meaning except at the
first level and is useless. With a program it can be made to drive its /O devices in any
way the author of the program chooses. Given a different program it can do something
else.

Both the power and the weakness of the machine are revealed at this second
level—power, in its ability to perform any list of instructions very rapidly, and weak-
ness, because it is quite impossible for the machine to do anything else than its current
program, and because the program can only be composed of the very primitive instruc-
tions engraved into the machine by its designer. Balky children play the game of doing
exactly what they are told to do and no more; the game is meant to be infuriating and is
quite successful. A computer is always playing that game. It does precisely what you
told it (provided you said it in the machine’s tiny, rigid vocabulary). If that is what you
meant, fine; if not, too bad. There are no circuits in the machine for judgment or for
common sense. It is not possible to engrave values or a sense of ethics on a silicon chip.

Whatever there is of judgment or of ethics in a computer system has been coded
there by the person who wrote the program. The machine sees nothing ridiculous in the
quantity $0.00. If the author of the program failed to include a test for zero, the machine
will rapidly and precisely print a bill for that amount. Most of the computer errors
headlined by the media arise from just such oversights. Many a so-called computer crime
has been perpetrated by someone who discovered and exploited a programmer’s mis-
take. As computers become more central to the world’s systems, the burden of responsi-
bility on the world’s programmers becomes heavier.

Hardware Versus Software

HARDWARE VERSUS SOFTWARE

Now we have enough background to define two very important terms: hardware and
software. A computer system is composed of the computer chip itself and its many
supporting chips, and some mechanical and electrical units that provide its input and
output. All these units are known collectively as the hardware. The whole purpose of the
hardware, its only reason for existence, is to make it possible for you to run programs.
The programs used with a computer are called, collectively, the software.

Itis very important that you grasp the distinction between hardware and software.
Here is a metaphor that may help: A program is to the computer as a record is to a
phonograph. Software is to a computer system as your record collection is to your hi-fi
system. A phonograph is useless without a record to play. Just so, a computer has no
value without a program to run.

A phonograph record is a copy of some original performance. Once the master disk
is cut, the record company can make copies easily, and anyone who wants to hear that
performance can do so at low cost—provided they have the ri ght kind of phonograph on
which to play it. A program is a record of one programmer’s solution to some problem.
Once written, it can be copied and published for the use of anyone who has the right kind
of computer on which to run it. There are many companies that publish software, and as
the owner of a computer system, you will become as careful in your purchase of
programs as the most discriminating audiophile is in searching out and choosing records.

Programs, as we’ll see, are written in much the same way that music is written by a
composer. In this sense a program resembles a musical score or the script of a play. A
program is a copy of the instructions for a performance, rather than a reproduction of the
performance itself. We could say that a program is to a computer as a script is to the cast
of a play, or as a score is to the orchestra that will perform it. One flaw in that metaphor is
that, unlike an actor or a musician, a computer is utterly incapable of improvising, It
always follows its script in an exact, mechanical way.

THE THIRD LEVEL: AN OPERATING SYSTEM

On the first level at which we can view the computer we see it as an arranger of electric
signals. At the second level we see it performing a program composed of elementary
steps. This book is concerned mostly with third-level and fourth-level views of the
computer. Creating a program at the second level is a tedious and error-prone business.
Exactly the right digits, hundreds of them, have to be entered into the machine. The first
programs written for a new type of machine have to be made this way. They are the
programs that comprise the third level: an operating system.

An operating system is a set of programs that apply the power of the computer to the
task of managing the computer. An operating system will contain several kinds of
programs. Some of the programs are concerned with managing the operations of the
computer’s I/O devices. Others use these to keep track of named collections of informa-
- tion, called files. Still others are concerned with the job of loading yet other programs on
command from a user.

Computer Fundamentals

Once we reach this third level, the machine itself becomes unimportant to us except
as it runs the operating system programs. Our attention shifts to the programs. They
define the relationship between the machine and its users; they give the machine its
personality. From this level on, we don’t care what kind of hardware we use, for all we
see is the software (the whole collection of programs available). To most users a
computer is nothing but a means of running programs. Except for its price and its
reliability the hardware is irrelevant.

File System and File Storage

Of all the software available the operating system is the most important. And of its parts
the most important are those programs that support the file system, a means to let the user
create a collection of data, give it a name, and store it on a diskette or a tape for later use.
Such a named collection of data is called a file. All permanently stored data are kept in
files. The file system includes programs that allow you to create files, erase them, and
rename them. Utility programs allow you to copy files from device to device (for
example, from diskette to a printer for examination). Diskettes and tapes are the
computer’s permanent storage. Files saved on a diskette are permanent in the way a tape
recording is permanent: they remain until they are erased or written over.

Working Storage

Working storage differs from file storage in several ways. Working storage is a
rapid-access scratch pad from which the machine reads the operation code numbers of a
program, and in which the machine will save the working values needed by the program
as it runs. It is closely coupled to the computer chip and can be accessed by it in less than
amicrosecond. It is made up of integrated circuits, and its contents vanish the instant that
power is turned off. All the instructions and data that stream through the computer chip
come from working storage. It is a buffer or temporary holding location between the
computer and file storage.

There are several conventional terms for working storage. The word “memory” is
often used. Engineers speak of RAM, short for Random Access Memory. Neither is a
good term, and we won’t use them in this book. What you and I know as memory bears
absolutely no resemblance to any kind of computer storage: it is dangerous to speak of
computers in human terms, for then we come to expect too much of them. However,
you’re likely to meet the terms “memory” and “RAM"” elsewhere.

Programs are stored in files, and loaded (that is, copied) into working storage
before they can be executed, or run. Both terms mean applying the computer to the list of
instructions. One small part of the operating system is resident in working storage; it is
loaded there when the machine is started up and remains until it is shut down. This
Monitor contains the program that will load another program from a file at the user’s
request, and then call the loaded program (turn the computer’s attention to that prog-
ram’s instructions).

The Third Level: An Operating System

Programs and Programming

The word “program™ appears often in the foregoing paragraphs. Let’s draw a breath and
think about what a program is and how it is created. A dictionary definition of the word is
“an outline of work to be done; a prearranged plan of procedure.” Earlier we said that a
list of operation codes is a program. That was a “plan of procedure” expressed in
machine language, so called because the operation codes defined for the machine are its
vocabulary, in a sense. When the list has been loaded into working storage the machine
can cycle through it, and thus the plan will be carried out.

Programs are composed by people. using the tools provided by the operating
system. The act of composing a plan for machine execution is called programming, and
the person who does it is acting as a programmer. The plan expresses the steps of the
solution to a problem. Such a step-by-step solution is called an algorithm; it is the
business of a programmer to design algorithms and express them in programs,

Programming Languages

Thanks to the operating system, the programmer need not write the operation codes but
can express the problem in a programming language. There are many of these. A
programming language really is a language, with parts of speech, a vocabulary, and
rules of grammar. Each of these elements is more restricted than the same element of a
natural language such as English. It wouldn’t be possible to have a conversation in a

" programming language because its rules would not be flexible enough or its vocabulary
general enough to support ordinary speech. A programming language is an artificial
language designed for easy expression of the solutions to some class of problem. Each
one represents someone’s idea of the best way to state those problems for machine
solution. None are completely successful; there are always problems that are awkward to
solve in one language but easy to solve in another. Programmers, because of their
experiences of ease or difficulty, and because they invest a lot of effort in learning a
language, become very partial to their languages. There are fads and fashions in
programming languages, and one or another will temporarily become the “in thing” to
use.

Interpreters and Compilers

A program is composed in the chosen language and entered into the machine as words,
numbers, and punctuation. The text of the program is usually stored in a file. Then an
operating system program, a language translator, is loaded. This program will read the
program’s text and translate it into a sequence of machine instructions. These can then be
executed by the machine, and execution will result in the actions the programmer
intended—provided that the programmer wrote what was meant.
There are two types of language translators: interpreters and compilers. An inter-
~— preter program examines each unit (word, number, phrase) of the program text in turn

10

Computer Fundamentals

and carries out the machine instructions it signifies. Both the interpreter and the program
text remain in working storage during execution, and so the space available for text and
for the program’s data is limited. Because the translation is carried out each time the
program is run, the overhead of machine instructions needed to translate the program is
added to the program’s execution time. The advantage of an interpreter is that it allows
easy testing and debugging (locating and fixing errors). When an error occurs, the
interpreter can report on the problem in the terms of the programming language that was
used. A correction can be made at once and execution continued.

Some language translators are compilers. These are programs that perform the
translation to machine language just once. The list of machine instructions that results is
stored in a file. This translated version of the program text is called an object program; it
can be loaded and run exactly like an operating system program. A compiled program
usually runs faster than an interpreted program, and has more working storage available
to it. However, it takes longer, and requires a better knowledge of the operating system,
to test and debug a compiled program.

The Lure of Programming

For those who take to it, programming is one of the most fascinating games ever devised.
Easier than chess and more varied than bridge, programming is both an intellectual
challenge and an act of personal domination over the machine. As programmers gain
experience, they try to get the right output in the most efficient way, while expressing the
algorithm in the most elegant, concise terms. Because of this challenge, recreational
programming can be more absorbing than reading or games. However, programmers,
like bureaucrats, are always subject to the temptation to confuse means with ends. In
their fascination with the intricate puzzle of machine and language, they are apt to forget
the people who will actually use the program.

Program Efficiency

Programmers are often concerned with making a program run as fast as possible. A
program'’s speed depends mostly on the algorithm—there are always faster and slower
solutions—and on the speed of the I/O devices that the program uses.

Programs in the operating system must run as quickly as possible in order to reduce
the overhead cost of running them. Such programs are usually written in machine
instructions rather than in one of the easier programming languages. A language
translator called an assembler is used for this. An assembler gives names to the operation
codes and to locations in working storage. This allows the program to be composed in
symbols people can read, thus relieving the programmer of much of the tedium of using
the machine at its second level. Writing machine language programs using an assembler
is called assembly language programming. The terms machine language and assembly
language are often used interchangeably, although the second refers to a symbolic
encoding of the numeric codes of the first.

—

The Fourth Level: Applications

THE FOURTH LEVEL: APPLICATIONS

The collection of operating-system software—file system, language translators, and
various utility programs—makes it possible for programmers to build applications. An
application is any program whose output is dedicated to use by people, rather than to
managing the affairs of the computer system. The term covers just about anything you
can do with a machine other than programming it: games, simulations, teaching
programs, text formatting programs, and commercial accounting all are applications.
The programs may be purchased, or written under contract by a professional program-
mer, or you may write them yourself. Except when it is being used for programming, the
machine will spend most of its time running applications.

Applications are the fourth level at which we can view a computer system. The
microscopic wonders of the circuits, the ingenious printers and disk drives, the elegant
complexity of the operating system—all exist so that application programs can be
written and run. Only the applications deliver useful work to aid people in their jobs, and
so only the applications can justify the cost of the computer.

FURTHER READING

This has been a very brief survey of the ideas surrounding a computer. We've defined a
number of terms in a casual way; these terms and others are listed in the glossary at the
end of the Tutorial section.

There is much more to be known about computers than could be told here. Many
topics that have been hinted at are outside the scope of this book. Computer architecture
(the design of the instruction set and I/O devices) is one field of study; the theory and
practice of programming is another. There are books about the correct relation between a
program and its user (the so-called man-machine interface), about the proper design of
accounting software, and about how to manage the computer as part of a business. Not
nearly enough work has been done on the effects that computers are having on our lives
and society, but some things are known and have been published.

To use computers you must be willing to read. Any system you buy will be
accompanied by pounds of printed matter. Moreover, there has recently been an
explosion of books and magazines about computers. Even the smallest bookstores have a
dozen or more titles in stock; technical bookstores often have hundreds. Here are a few
sources that the author has found useful. Any of them will lead you to others. Good luck!

Computer Magazines

The following magazines try to serve the needs of novices as well as those of experienced
computists. They are especially useful because they carry advertisements for new
software and hardware. It is difficult to keep up with that fast-changing market in any

~— other way.

11

12

Computer Fundamentals

Creative Computing (P.O. Box 789-M, Morristown, NJ 07960) concentrates on games
and educational computing, with occasional tutorials.

Desktop Computing (80 Pine Street, Peterborough, NH 03458) is directed to profession-
als and owners of small businesses; it claims to have eliminated all jargon.
Interface Age (16704 Marquardt Avenue, Cerritos, CA 90701) attempts to balance
coverage of home and business uses of small computers. It often carries product

surveys and reviews of software.

Microsystems (P.O. Box 789-M, Morristown, NJ 07960) is a bi-monthly magazine
aimed at programmers and experimenters. It has a strong emphasis on using and
programming CP/M systems.

Popular Computing (70 Main Street, Peterborough, NH 03458) aims “to demythologize
small computers in a direct and entertaining manner.”

Computers in Society

Osborne, Adam. Running Wild—The Next Industrial Revolution. Osborne/McGraw-
Hill, 1980. An enthusiastic view of the possibilities of small machines.

Covvey, H. Dominic, and Neil McAlister. Computer Conciousness: Surviving the
Automated 80s. Addison-Wesley, 1980. A more sober analysis that takes care to
point out the problems and dangers.

Weizenbaum, Joseph. Computer Power and Human Reason. W. H. Freeman, 1976. A
thoughtful, philosophical study of what computers can be expected to do and what
we should let them do.

Managing Computers

Schneider, Ben Ross. Travels in Computerland. Addison-Wesley, 1974. An entertain-
ing account of how a professor innocently blundered into the cutting edge of
technology.

Brooks, Frederick P. The Mythical Man-Month. Addison-Wesley, 1978. A computer
professional’s reflections on his career in which he points out the ways in which
people and their systems can go wrong.

Bardach, E. The Implementation Game: What Happens After a Bill Becomes Law. MIT
Press, 1977. Not a computer book, but a practical analysis of the ways that
organizations oppose or adapt to change. Essential for anyone wanting to introduce
a computer into an existing power structure.

Programming
Amsbury, Wayne. Structured BASIC and Beyond. Computer Science Press, 1980. A

clear, well-written, methodical introduction to the fundamentals of programming.
Uses the BASIC programming language. available on every small computer.

e

Further Reading

Kernighan, Brian, and P. J. Plauger. The Elements of Programming Style. McGraw-
Hill, 1978. After you've written a few programs, read this to learn what you've
been doing wrong without being aware of it.

Weinberg, Gerald M., The Psychology of Computer Programming. Van Nostrand
Reinhold, 1971. After you've written a lot of programs, or if you have to manage
other programmers, read Weinberg to find out what is going on.

Computer Architecture
The best practical introduction to computer design is to learn the architecture of your

own. Get an assembly language manual for your machine and experiment. For the theory
behind it try Foster, Caxton C., Computer Architecture, Van Nostrand Reinhold, 1970.

13

Chapter 2

Hardware for
CP/M

COMPUTER PACKAGING 15
ELECTRONIC PARTS 16
The Processor 16
Busses and Boards 18
THE TERMINAL 20
Human Factors of the Terminal 20
Hardware Factors of the Terminal 22
DISK STORAGE 24
Diskette Storage 24
CP/M’s Use of Diskettes 27
Diskette Variations 28
Diskette Compatibility 29
HARD DISKS 31
Hard-Disk Technology 31
The Uses of Hard Disks 32
CENTRALIZED DISKS 32
PRINTERS 33
Typewriter Printers 33
Matrix Printers 35
Other Printers 37
Printer Interfaces 37

OTHER I/O DEVICES 38

Computer Packaging

In this chapter we look closely at the hardware parts of a CP/M system. One aim of the
chapter is to introduce the names of the components and the jargon used to describe
them. Anyone who uses a CP/M system needs these terms to understand the conversa-
tion of salespeople and programmers.

When buying hardware there are choices to be made that affect the usefulness of the
system. A second aim of the chapter is to alert shoppers to the important choices and to
give some guidelines for making them.

If you are new to computers, you should not attempt to absorb all this information in
one reading. Skim the chapter now; return to it when questions arise.

COMPUTER PACKAGING

All systems that support CP/M have certain hardware parts in common. There will be a
terminal (a video screen and keyboard) and one or more disk drives. There will be the
electronics, the collection of hundreds of integrated circuits. These can be grouped into a
few components by function: the processor, working storage, and interface circuits. The
terminal and disk drives will be visible; the electronic parts will be housed in a case of
some kind.

There are many ways of organizing these parts into cabinets. Some makers put all
the parts into a single box (Figure 2-1). Others put the electronic components in a cabinet
with the disk drives leaving the terminal separate (Figures 2-2 and 2-3). Or you can buy a

FIGURE 2-1 photo: PAWEKPIX

An all-in-one computer, in which processor, terminal, and two S-inch diskette drives are
packaged in a single cabinet. This system happens to use “memory-mapped” terminal

~— circuitry.

I5

16

Hardware for CPIM

FIGURE 2-2 photo: PAWEKPIX

A system that places the processor and two 8-inch drives in a single cabinet, leaving the
terminal separate, to be connected via an RS-232 interface. This system’s electronics areon a
single circuit board.

system with each component in a box of its own, as we used to buy high-fidelity
components (Figure 2-4). The larger the number of boxes, the greater the number of
choices open to the buyer. An all-in-one system commits you to that manufacturer’s
design for all parts of the system. Buying a system such as the one in Figure 2-4 allows
you to select each part individually. There is more to this than flexibility of choice. An
all-in-one system is tidy and compact; a multibox machine takes more space and there is
a tangle of interconnecting cables behind the boxes. A mix-and-match system is
open-ended and flexible, but to build one successfully you must know a great deal about
the requirements and design of the components, as some components won't work with
others.

ELECTRONIC PARTS
The Processor

Tue CPU. The heart of a computer system is a single integrated circuit, the Centra. _
Processing Unit or CPU. This is the computer on a chip that journalists marvel at (and it

Electronic Parts

FIGURE 2-3 photo: PAWEKPIX

This system, like that in Figure 2-2, puts electronics and drives in a single cabinet. In this case
the drives are of 5-inch diameter, and the electronics are organized around the S-100 bus.

FIGURE 2-4 photo: PAWEKPIX
A component system. From left to right: two 8-inch drives, terminal, and S-100 processor
cabinet. This book was written on the system shown.

17

18

Hardware for CPIM

is marvellous), whose instruction set programmers love or hate, and whose abilities and
low price have founded an industry. It is worthless alone. The CPU must be surrounded
by a number of support circuits that feed it timing signals and connect it to the rest of the
machine. This collection of circuits we call the processor.

The Intel 8080 CPU is the machine for which CP/M was written and most versions
of CP/M are written in the 8080’s assembly language. The Zilog Z80 CPU came a little
later. Its instruction set contains all of the instructions of the 8080 and adds a few dozen
of its own. Although written in 8080 assembly language, the programs composing CP/M
will run correctly on a Z80 machine. CP/M makes no use of the Z80’s extra instructions
but application programs are free to do so; if they do, they can’t be run on an 8080. The
Intel 8085 is a later, faster circuit that provides an instruction set almost identical to that
of the 8080; it too runs the 8080 form of CP/M.

In the fall of 1980 Digital Research announced CP/M rewritten for the Intel 8086, a
new circuit with a different instruction set. CP/M-86, as this rewritten system is called,
has the same commands and uses the same types of file storage as the original CP/M.
Systems containing the 8086 are as yet rare, as are application programs that will run on
them. It seems likely that within a year or two the 8086 will be a very common CPU for
CP/M systems.

WORKING STORAGE. The processor requires a program, and a program requires
variables, repositories for the values on which it operates. Both the program and its
variables reside in working storage, a storage medium that the processor can access (read
from or write to) in less than a microsecond (one millionth of a second). Like the
processor, working storage is built from an array of integrated circuits.

Working storage, like all storage in the system, is measured in byfes, a unit of
storage that can hold a single character or a part of a decimal number. In scientific
notation the prefix kilo signifies a multiplier of 1000. Computer people, always more
comfortable with powers of two than with powers of ten, use the same prefix to signify a
multiplier of 1024 (two to the tenth). When measuring working storage, it is convenient
to talk of kilobytes, or units of 1024 bytes. The maximum amount of working storage that
can be handled by an 8080, Z80, or 8085 machine is 64 kilobytes (written 64 KB), and
this is the usual size sold with new systems. CP/M-86 can make use of more working
storage; 128 KB is a typical quantity. In general you can’t have too much working
storage.

INTERFACE Circuits. The processor is connected to the I/O devices of the system
through interface circuits: circuits that coordinate the transfer of data. An interface
circuit mediates between the timing and electrical levels required by the device on one
side, and the timing and electrical levels required by the processor on the other. The
interface circuitry is also built of integrated circuits.

Busses and Boards

The computer will contain a couple of hundred integrated circuits. They must be
connected to each other in groups, and the groups must be connected. The connections

Electronic Parts

are made through metallic traces laminated to a fiberglass board: a circuit board (or
circuit card). The way the electronic parts are packaged into boards affects the price of
the system, the way it is maintained, and the degree to which it can be expanded.
Some designers place all the electronic components on a single board. Others place
each major component (processor, working storage, etc.) on a board of its own, and then
connect the boards by plugging them into a bus, a set of parallel conductors.

SINGLE-BOARD PACKAGING. The single-board design is the most economical but the
least flexible. The contents of the computer are established once and for all by the
designer; it would be difficult and costly to add features not allowed for in the layout of
the board. If something fails, there is no hope of swapping a major component; the entire
board will go in for repairs.

Bus PACKAGING. The bus design (Figure 2-5) costs more; each component has a board
of its own and the bus itself is a fairly complex circuit board. The extra cost pays off in
flexibility of design. Any board designed to work with that bus layout can be inserted
into the computer and put to use (always assuming the software is there).

THE S-100 Bus. The most common bus layout for CP/M systems is called the S-100
bus. There is a wide variety of circuit boards designed for it, and most of them will work

U

BN AP T, o e

T

FIGURE 2-5 photo: PAWEKPIX

.
ol

Close-up of a bus-organized processor. The bus itself is visible on the floor of the cabinet at
the right. The CPU card is marked; the disk controller card has been pulled out for display.

19

20

Hardware for CPIM

with each other properly. However, not all of them will work because the S-100 bus was
not completely defined in its early days. Certain conductors were left optional, and
different designers made conflicting choices as to which signals to put on the unspecified
lines. The Institute of Electrical and Electronics Engineers (IEEE) has defined a standard
for the S-100 bus (IEEE-696). Any two components that claim compatibility with the
standard probably can be plugged into the same bus without problems, but only
“probably,” because the standard is new and there are many older, marginally conform-
ing products still on the market. Within a year or so problems of bus incompatibility
should be uncommon.

THE TERMINAL
Human Factors of the Terminal

The terminal, a keyboard with a screen, is the point at which the computer and its user
come together. You will spend thousands of hours looking at the screen of your terminal,
and type hundreds of thousands of strokes on its keyboard. No part of the system
deserves more careful consideration of its comfort and usability.

TERMINAL SCREENS. Terminals look much alike from a distance, but close up they
reveal an astonishing variety. Their differences are far wider, for instance, than those
between one office typewriter and another. Look closely at Figure 2-6, which shows the
character sets of four different terminals, in the order in which the characters appear on
the keyboards. Halftone reproduction probably doesn’t reveal the differences in contrast
and sharpness that were apparent on the screens, but notice the shapes and proportions of
the letters. Some character sets are definitely more pleasing than others.

TerMINAL KEYBOARDS. Think carefully about the keyboard layouts represented in
Figure 2-6. Compare them with the keyboard of an office typewriter. If you are not an
experienced typist, minor details of keyboard arrangement won't trouble you, but a
touch typist at a keyboard such as that in Figure 2-6a will be seen to fumble, strike over,
and fume. It is strange that a designer would create a keyboard layout without consider-
ing the keyboards already in existence, yet it happens.

CompPARING TERMINALS., When shopping for a system, consider the person who will
spend the most time at the keyboard. That person should give the terminal a thorough
trial. The keyboard should have a good touch, something only a typist can recognize.
Many terminals have acoustic feedback (they beep or click when a key is pressed). Is that
a friendly noise or an irritating electronic one? Cast a critical eye on the screen. Check
the contrast (relative brightness of letters and background), the sharpness (definition of
the dots composing the letters), and the linearity (straightness of rows, consistency of
character size) over all parts of the screen. Using a computer requires an alert, concen-
trated mind. Eyestrain and misread messages complicate matters.

W R UT:0

R HERT YU T 00 -4

-
.
w—ed
-
——y
= =
Lo
Li.
=]
o
<x

jiko]
ZXCVBNNC)

asdtgh

?

The character sets of four terminals, ordered as they appear on the keyboards. Note the different arrangements of

FIGURE 2-6

”

f the characters.

ign o

des

ing

, and the vary

punctuation, which can upset a touch-typist

21

22

Hardware for CPIM

Hardware Factors of the Terminal

MEeMORY-MAPPED TERMINALS. Terminals can be divided into two categories on the
basis of their interface methods. Some terminals are what are called memory-mapped
terminals; that is, a portion of working storage is shared between the computer and the
terminal hardware. What the CPU puts in that area of storage, the terminal displays on its
screen. The advantage of this design lies in the great speed with which the display can be
updated. The CPU can change the contents of the display storage area in microseconds;
only milliseconds will elapse before the display screen reflects the change. Memory-
mapped displays give an impression of lively responsiveness. They have the disadvan-
tage that 2 kilobytes (KB) of working storage must be dedicated to the display and are not
available to programs. Since the terminal interface hardware must be intimately linked to
working storage, a breakdown in the terminal will probably keep the whole system
down. There is little chance of plugging in a loaner terminal while repairs are being
made.

TTY-CompatisLE TErRMINALS. The majority of terminals connect to the processor
with a standard plug through which pass standard signal lines. These are usually called
“TTY-compatible” terminals. The standard is the Electronic Industries Association
(EIA) standard RS-232-C, “Interface Between Data Terminal Equipment and Data
Communication Equipment Employing Serial Binary Data Interchange.” RS-232-C was
published in 1969 and has become the nearest thing to a universal interface to be found in
the computer world; the 25-pin plug it calls for (Figure 2-7) is seen everywhere. (In 1977
the EIA published a new standard, RS-449, specifying electrical levels better suited to
integrated circuits. At this writing RS-449 has had little effect in the marketplace.)

FIGURE 2-7 photo: PAWEKPIX

The business end of a DB-25 plug, the standard connector for the RS-232 interface. It is
common for only nine of the pins to be used.

The Terminal

Any terminal equipped with an RS-232 plug can be connected to any computer with
an RS-232 socket, but communication isn't guaranteed. The processor (and the soft-
ware) have to agree with the terminal on several points. The first agreement must be on
the signaling speed, or transmission rate.

TrANsMISSION RATE. As the title of the standard says, the terminal and the computer
will exchange serial binary data: they transfer 1 bit at a time. The rate at which bits are
sent is the transmission rate; it is given in bits per second (bps). Industry people use the
word baud as a synonym for the phrase “bits per second.” This is technically incorrect—
baud rate and bit rate need not be the same—but has been sanctified by common usage.

MATCHING TRANSMISSION RATE. Clearly, each device must send bits at the rate the
other expects them to come. Most terminals are equipped to operate at any of several
transmission rates. The standard rates are multiples of 75 bps: 300, 2400, 4800, 9600,
and 19,200 bps are the most common. The terminal’s rate is usually set from very small
switches on an internal circuit board. The I/O interface in most computers will operate at
a variety of transmission rates as well. The computer’s rate may be set by software or by
switches, or even by soldering jumpers on a circuit board. Usually it is best to find out
what the processor is set up for and then to set the terminal to agree with it. However the
rates are sct, the two devices must use the same rate.

Errects oF TransmissioN RaTte. The higher the transmission rate is set, the better.
The data being exchanged between processor and terminal are sent 1 bit at a time, but the
bits represent bytes (each byte containing 8 bits and standing for one character). Each
byte sent is framed by start and stop bits. There will always be 1 start bit, but there may
be 1, 1V2, or 2 stop bits. This is a matter that the two devices must be made to agree on,
again by setting switches. One stop bit is normal at rates above 300 bps; that plus a start
bit makes a total of 10 bits that must be sent for each character displayed at the terminal.
The maximum rate of character transmission is then the bit transmission rate divided by
10. Since the screen contains 1920 characters (24 lines of 80 characters), a transmission
rate of 9600 bps will allow the processor to rewrite the entire screen in about 2 seconds.
Transmission at 19,200 bps reduces this to 1 second. That is a significant improvement
when you are using a full-screen editor or playing a simulation game.

MATCHING PARITY. Terminal and processor must, finally, agree on whether they will
use parity-check bits and if so, whether it is to be an odd- or an even-parity check. This
again is a matter of finding out what the processor expects and setting switches at the
terminal to suit.

SPECIAL FEATURES. Provided that its switches have been set correctly, any terminal
with an RS-232 plug should work with any processor that has an RS-232 socket, at least
for the transmission of normal characters, and that is all that CP/M needs. But modern
terminals provide, and some software uses, functions beyond the simple display of
letters and numbers. Modern terminals will accept control sequences, special character

23

24

Hardware for CPIM

sequences that cause them to clear the screen, move the cursor to a certain location, erase
the line the cursor is on, and so forth. Full-screen editors such as the popular Word Star
and Magic Wand programs require these features, and you might want to use them in
your own programs.

CoNTROL SEQUENCES. Unfortunately, different makes of terminals provide different
sets of functions. Where their functions are the same, the control sequences that invoke
them may be different. There is no recognized standard for control sequences (the
American National Standards Institute has published a suggested standard but it has had
little effect, probably because its three- to five-character sequences offend designers
whose practice is to use two-character sequences). Therefore, if you write a program that
relies on your terminal’s features, it will be a device-dependent program: one that
probably won’t work with any other make of terminal. This is no reason not to write such
a program, but the program should allow for easy change to suit other devices.

The authors who publish fee software solve the problem with elaborate customizing
schemes that tailor their programs to your terminal type. Once tailored by the distributor,
the program is just as device dependent as one of your own. Thus if you change terminals
permanently or temporarily, some of your most used (and most expensive) software will
need modification,

DISK STORAGE
Diskette Storage

The diskette (Figure 2-8) is CP/M’s main form of file storage. Unless you are lucky
enough to have a hard disk (described in the next section) you will keep all of your
software and data as files on diskettes. The reliability, speed, and capacity of your
diskettes and their drives will have a lot to do with how reliable, fast, and capacious your
system seems.

Tue DiskeTTE. Figure 2-9 reveals how a diskette is packaged. The plastic jacket is
lined with a soft padding. The recording medium is a disk of a tough, flexible plastic,
coated with a layer of ferromagnetic material (that is, a highly refined rust); its surface is
polished smooth. The thickness of the coating, and the required smoothness of the
surface, are measured in units of millionths of an inch.

THe DiskerTE JACKET. The plastic disk is enclosed in a simple jacket lined with soft
material. The padding helps keep the disk clean by wiping it as it turns. There are
openings in the cover to allow the disk drive to grip the hub of the disk and slide its
read-write head over the surface.

At the edge of the diskette jacket is a small notch. This is a write-protect notch, used
to prevent the diskette from being written on. Eight-inch diskettes are protected against
alteration by exposing the notch. Writing is possible only when the notch is absent or

Disk Storage

FIGURE 2-8 photo: PAWEKPIX
The two diskette sizes. Note the write-protect notches, which would be covered with labels
like the ones in the photo. Look closely; the large diskette is starting to wilt under the hot
lights.

covered with a gummed label. Five-inch diskettes are protected in the opposite way—
covering the notch makes it impossible to write on one.

Tue DISKETTE DRIVE. The diskette is inserted into a drive for use (each of Figures 2-1
through 2-4 shows a diskette partially inserted into its drive). The drive is a mechanism
that holds the diskette, spins it, and reads and writes data on its surface. As the door of
the drive closes, an axle centers the disk in its jacket and flanges grip its hub. The edges
of the jacket are gently squared in a frame. The axle of the drive rotates the disk within its
jacket at 360 rpm (revolutions per minute), or 300 rpm for the smaller 5-inch drives.

The drive contains hinged arms like a pair of tongs that move in and out along a
radius of the diskette. Atthe end of one arm is a read-write head, a device that can record
data on, and read it from, the magnetic surface passing beneath it. Some double-sided
disk drives have a read-write head on each arm; they can record data on both sides of the
diskette. The more common single-sided drives have a pressure pad on the arm opposite
the head. The arm can step in and out over the surface of the diskette. Each step defines a
track, a concentric circle on the surface of the diskette.

25

26

Hardware for CPIM

photo: PAWEKPIX

Secrets of a diskette, revealed: the jacket is lined with padded material, the diskette surface is
smooth and reflective. When the index hole in the disk lines up with the one in the jacket it
marks the beginning of a track.

Drive SELECTION. When a program in the processor wants access to the drive, it
causes the drive to be selected. The arms over the diskette close together, pinching the
diskette gently between head and pad (or between two heads). Most drives make an
audible click as they “load the head™ in this way; some drives have a light that comes on
to show that they have been selected.

SEEKING. The processor can then command the drive to move its head to a particular
track, to wait until a particular part of the track is passing below the head, and then to
read or write data. Moving the arm to a particular track is called seeking. Most drives
make a sound as they seek; some emit a loud buzz, others a soft purr. Once the processor
has finished using it, the drive is deselected. The access arms open to let the diskette turn
without friction.

TRACKS AND SECTORS. Data are stored along the tracks. Nothing is recorded between
them; read-write heads contain erase elements that mop up any stray signals that seep out
of the line of the track. The diskette is marked by imaginary radial lines into arc-shaped
sectors. The drive always reads or writes one or more complete sectors. Figure 2-10
shows a diskette surface that was treated to reveal the tracks and sectors. Powdered iron
was floated across the surface. Iron particles clung where the read-write head had

Disk Storage

F-[-GURE 2-10 photo: PAWEKPIX

Powdered iron clings to the magnetized areas of a diskette to reveal the pattern of tracks. The
radial marks are formed by the sector boundaries.

magnetized the surface. This structure of sectors and tracks is the only organization
imposed by the hardware.

CP/M’s Use of Diskettes

CP/M imposes a higher level of organization on each diskette. It hides the details of track
and sector from the user and makes the diskette appear to contain a collection of files,
each with a name and some quantity of data. The user need not be concerned with the
location of a file; a file’s data may be scattered in different sectors over the surface of the
diskette, but the file can be treated as a single object.

Tue DIrRECTORY. CP/M reserves the first (that is, outermost) tracks of a diskette for its
own uses. The first two or three tracks are reserved for the bootstrap program, a subject
to which we return in Chapter 5. Part of the next track is used for a directory of the files
on that diskette. The directory lists the files by name, and for each gives the location of
the file’s data on the diskette. When a file is needed, CP/M can find it by looking it up in
the directory.

STORING FiLes. When a new file is created, CP/M allocates space to it from the
available sectors, using those nearest the outside first. When a file is deleted, the space it

27

28

Hardware for CPIM

occupied is made available again. CP/M’s main function is to maintain files and keep
track of disk space.

Diskette Variations

Everything said so far of diskettes is true for all of them, but there are several
characteristics that vary. These have to do with the exact size of the diskettes and their
tracks and sectors.

DiskeETTE DIAMETERS. A diskette may have one of two diameters—38 or 5 inches; see
Figure 2-8. (These sizes refer to the jackets; the disks inside are slightly smaller.)
Diskette drives are designed for one size only. The first diskettes were made in the 8-inch
size. The 5-inch size was introduced in an attempt to lower the cost of diskette storage.
The attempt was successful; although they hold fewer data, the smaller disks and drives
are cheaper. Inexpensive home computers offer 5-inch drives. Most CP/M systems use
8-inch drives because the more serious applications of these systems demand the larger
capacity.

SINGLE- AND DOUBLE-SIDED Use. Diskettes may carry data on one or on both sides.
The double-sided diskette is a recent innovation; drives with two read-write heads are as
yet uncommon. Although all diskettes have magnetic material on both faces, diskettes
for double-sided use need to be of higher quality. Double-sided drives have more parts
and must be made to tighter standards. Therefore, they are more expensive.

RECORDING DEnsITIES. Diskettes may be recorded at one of two bit densities. A
single-density diskette has bits written along its tracks at a density of 3200 bits per inch;
double-density recording writes 6400 bits per inch (both as measured along the inner-
most, or shortest, track). Drives that support double-density recording usually can
record at single density as well.

SEcTor S1zE. The sectors of a diskette may have one of several lengths. For single-
density recording the normal sector size is 128 bytes, although 256-or 512-byte sectors
can be used. Atdouble density the sectors may be 128, 256, 512, or 1024 bytes long. The
combinations that are possible depend on the drive, its /O interface circuits, and the
software. The sector size determines the number of sectors that will fit along a track. In
most cases more data will fit on a track when fewer, larger sectors are used.

Sort AND HARD SECTORING. The number and size of the sectors are usually deter-
mined by the drive and the software. When this is the case, the diskette is said to be
soft-sectored, meaning that the sector size can be changed. Some drives require a
hard-sectored diskette. Such diskettes have a ring of index holes around their hubs; the
passage of an index hole marks the end of a sector. Formatting is the operation of writing
blank tracks and sectors at the size and density that will be used. A soft-sectored diskette
can be formatted to any sector size the drive and software will permit; a hard-sectored
one cannot,

 —

Disk Storage
CHOOSING DRIVES. There are five characteristics that must be known about a diskette:

. the diameter, 8 or 5 inches

. whether it is hard- or soft-sectored

. whether it is single- or double-sided

- Whether it is recorded at single or double density
. the sector size: 128, 256, 512, or 1024 bytes

L S S I S

If all combinations were possible at once, you would be faced with keeping track of
diskettes in any of 64 possible formats! Fortunately this is not the case.

Your drives establish the diameter of your diskettes, whether they are hard- or
soft-sectored, and whether they can be double sided or not. Thus you have a maximum of
eight options when you buy your system. In fact, not all those combinations are possible.
Most likely you will be offered a choice only between a less expensive system that uses
S-inch drives (for example, Figure 2-1 or 2-3) and one that uses 8-inch drives (Figures
2-2 and 2-4). If you opt for the larger drives, you will be offered single-sided,
soft-sectored, double-density drives as a matter of course; double-sided drives are more
expensive, whereas hard-sectored drives are uncommon in general-purpose computers.

CHOOSING A FORMAT. Having selected a system with 8-inch drives, you must decide
on how you will format your diskettes. There are really only two choices. It is customary
to distribute software on single-density diskettes with 128-byte sectors. This is the
exchange format, the only format that every 8-inch drive is sure to handle (there is no
agreed exchange format for 5-inch diskettes). As you buy software you will accumulate
a collection of such distribution diskettes. If you exchange diskettes with someone else
this is the best format to use for the exchange (unless you are positive that their drives are
identical to yours). For diskettes that will stay with your own system you will want the
maximum storage capacity, and so you will probably use double-density disks at the
largest sector size.

Diskette Compatibility

It is common for any diskette drive that handles 8-inch, soft-sectored disks to be
advertised as “IBM compatible.” Such a claim is both true and false. Compatibility
among diskettes has little to do with IBM, and much to do with factors other than the
diskette drive.

History oF DiskeTTES. IBM was the first company to introduce diskette storage.
IBM used diskettes at first as a convenient way for its service technicians to carry
diagnostic programs. The diskette drives were hidden under the covers of the larger
components of an IBM computer and were not made available to user programs.
The convenience and low cost of diskette storage attracted the attention of many
designers, and the devices were soon built into many kinds of equipment. Dozens of
companies placed them in automatic cash registers, word-processing stations, and

29

30

Hardware for CPIM

laboratory data-collection systems—anywhere that data needed to be captured. IRM
made diskettes the primary storage medium in some of its smaller machines. When
inexpensive personal computers first appeared, the diskette medium was well de-
veloped.

IBM CoMPATIBILITY. Because their machines were first, IBM’s diskette formats have
remained the de facto standard for the medium. IBM’s document GA21-9182, IBM
Diskette General Information Manual, describes the diskette formats that IBM’s diffe-
rent machines will accept (document GA21-9388, IBM Diskette OEM Manual, gives
detailed engineering specifications). At the most fundamental level, any IBM system is
capable of reading a single-density, soft-sectored diskette with a sector size of 128 bytes.
There is no formal standard in these matters, but advertisers will use the phrases “IBM
compatible” and “industry standard” when describing a diskette drive that is capable of
handling that format.

A drive may be capable of writing “IBM-compatible” format, but its user may not
elect to make it do so. Some of IBM’s machines will accept double-density disks; others
will not. The same is true of different sector sizes and double-sided diskettes. This can be
said of drives from any manufacturer. In the general market, considerations of diameter,
hard-sectoring, and fine details of formatting are added as well.

Data CompaTiBILITY. In addition to the question of whether or not a drive can read a
particular format, there arises the question of how the data are organized. This organiza-
tion is defined by the operating system—in our case, CP/M—and not by the drive. CP/M
organizes the diskette into files in a certain way and that organization is nothing like the
scheme used by any IBM system. For example, most IBM software expects a volume
label on the first track of the diskette, where CP/M stores a bootstrap program. (You can
buy a utility program that runs under CP/M that will read and write diskettes in one
format acceptable to a number of IBM’s machines, usually called the 3740 format after
the most common machine to use it.)

DiSKETTE EXCHANGE ACROSS OPERATING SysTEms. Diskettes that are perfectly
compatible as far as the drives are concerned will usually be rejected by an operating
system other than the one that wrote them. For example, the Radio Shack TRS-80 Model
11 supports both its manufacterer’s operating system, TRSDOS, and a variant of CP/M.
Diskettes prepared under one operating system are unacceptable to the other, even
though they are written and read on the same drive.

DiskeTTE EXCHANGE Across CP/M Systems. It is easier to exchange diskettes
between CP/M systems. There is a standard exchange format for CP/M diskettes: the
8-inch, single-density diskette with 128-byte sectors. Any CP/M system that handles
8-inch diskettes will read that format.

Except for the exchange format there is no agreement whatever between vendors of
CP/M systems. There are many technical differences between one system’s version of
double-density recording and that of another. There is no agreed-upon exchange format
for 5-inch diskettes.

Hard Disks

JupGinG CompaTiBILITY. If you are preparing to buy a CP/M system, and if part of
your plan is to exchange diskettes with another system, you must be wary of all claims of
compatibility. It is safest to ignore all statements by manufacturers and salespeople on
this subject. The problems of data compatibility are many and subtle; an honest
salesperson may still not be fully informed on the needs of a foreign operating system.
The only way to ensure that your plan will work is to carry out a trial exchange of data
before you are committed to the system.

HARD DISKS
Hard-Disk Technology

Disk technology was pioneered by IBM in the early 1960s. The first disk drives used a
stack of rigid platters of aluminum, not a flexible scrap of plastic. The disk drives on
large computers today still use this technology, although much refined.

The concepts of the hard disk are much like those of the diskette. There is a rotating
disk coated with a recording medium; against the recording surface rides a read-write
head on an arm. The differences arise from the hard disk’s speed and capacity.

Hard disks are never exposed to the environment in a cardboard Jacket; they are
enclosed in sealed cases and supplied with filtered air to keep them clean. They usually
turn at 3600 rpm, ten times the rate of a diskette. This speed reduces the latency of the
disk. Latency is the time that elapses between the instant the processor selects the drive
until the desired sector rotates under the head. Average late ncy is simply half the rotation
time of the disk: 8.3 ms (milliseconds) for a diskette, 0.83 ms for a hard disk.

Seek time is another area in which hard disks excel. This is the time required to
move the access arm from track to track, or across several tracks. The access arms of
hard disks are usually driven by more expensive and precise mechanisms that move the
arms much faster than a diskette drive’s arm will go.

If the read-write head of a hard disk pressed against its surface, the heat of friction
would quickly melt the coating and burn the head. The read-write heads of hard disks
don’t touch the disk’s surface; they fly a few millionths of an inch above it, supported on
air as a water skier is supported by the flow of water. Once in a very long while, a
read-write head might touch down on the disk, probably dragged down by dust or smoke
particles. The result is called a head crash and it ruins the disk.

IBM’s most-recent-but-one generation of disk drives pioneered a new design of
read-write head that was cheaper to make and allowed an even closer flying height of
head to disk. A smaller flying height permits data to be written at a higher density; the
new head design allowed smaller, cheaper disks that yet held more data than their
predecessors. Prior to the announcement of these products, IBM’s internal code name
for the project was “Winchester.™ One of the unannounced drives was stolen from the
laboratory; in the ensuing trial the code name entered the vocabulary of computer
engineers. Other manufacturers have adapted the technology to their own products, and
“winchester-technology disk™ is the accepted jargon phrase for a collection of design
techniques.

31

32

Hardware for CPIM

The Uses of Hard Disks

Like the minute size of a computer chip, the intricate technology of disk design is not
really significant to the buyer or user, except as it delivers more function, more capacity,
or a better price.

Disk Capacrty. Hard disks far outstrip diskettes in storage capacity. A double-sided,
double-density diskette will store about 1000 KB of data (1000 kilobytes or, as it is
usually abbreviated, 1 megabyte or I MB). A typical hard disk for small computers will
contain 20 MB; capacities up to 100 MB are available. For a small system this is an ocean
of data space (as a point of scale, the latest generation of drives for large machines offers
up to 2500 MB per drive, with strings of four or eight drives not uncommon in large
installations).

ESTIMATING NEEDED CAPACITY. A quantity of 100 MB of data is not hard to accumu-
late, but it is not always needed on-line, that is, instantly accessible to the computer. A
single user over the course of time might accumulate a library of 100 double-density
diskettes—data equivalent to that of a 50-MB hard disk. Some of those diskettes would
represent history files, and others would be needed only occasionally for use with certain
programs. The data capacity needed on-line is determined by the size of the largest single
file or group of files needed by one program. It is easy to estimate this need before the
system is bought or the program written. Type out the information elements that will be
stored in a single record of the file using typical values. Count the characters. Estimate to
the nearest thousand the number of records that will be in the file, and multiply. Then add
50 percent for contingencies and for the unwritten law that files always grow and never
shrink. If the result is less than 500 KB, the file should fit comfortably on a double-
density diskette. If it is between 500 KB and 1 MB, the file is still suitable for diskette
storage but more, or double-sided, diskettes will be needed. Files up to 2 MB can be
handled on diskette but only sequentially, and both programmer and operator will be put
to the trouble of changing diskettes in midrun. If you require files of more than 2 MB,
you must consider the purchase of a hard disk. If you acquire a hard disk for your CP/M
system, you will enjoy faster response to your commands and faster file access than that
of your less affluent peers. You also will be faced with a difficult problem of backup, that
is, saving copies of your data against the inevitable day when the on-line data are lost.
We discuss backup in Chapter 8.

CENTRALIZED DISKS

Recent technological innovations have made the use of hard disks more economical
in one special case—when there are to be several CP/M systems close together (in the
same building). Then the expensive hard disk can be shared among the systems, holding
a set of files for each. When the hard disk’s cost is divided in this way, its per-system
price can approach that of diskette drives.

—

Centralized Disks

CP/NET. One such system is called CP/NET. It is a software solution created by
Digital Research, which produces CP/M. Under CP/NET an MP/M system equipped
with a hard disk (and perhaps other costly 1/O devices) communicates with a number of
CP/M systems near it. The central machine makes file space available, transferring data
on request from the user systems. The CP/NET software makes the communication
between systems invisible to the user, making the remote hard disk act like a local
diskette drive.

THE Corvus “CONSTELLATION.” A hardware manufacturer, Corvus Industries, has
produced a hard disk packaged with its own processor. The disk-processor combination
attaches to one or more nearby CP/M machines in the same way, and uses the same
interface electronics, as a diskette drive would be attached. Each CP/M system gets the
same responses from the hard disk that it would get from its own diskette drives, but the
hard disk plays the role of diskette drive for several systems at once, keeping each
system’s data in a separate area.

Tue Use oF CENTRALIZED Disks. In both cases the designers have taken pains to
make the interface for both programs and users as much like that of a diskette as possible.
Users are meant to regard their section of a centralized disk as an invisible diskette that is
always loaded. Programs access files on the centralized disk exactly as they do files on a
local diskette drive.

FuTure DEVELOPMENTS. This is a new area for CP/M systems, and one in which the
technology is changing rapidly. By the time this book is in print there will surely be more
centralization schemes than are presented here. At the same time the corridors of the
industry are a-buzz with rumors of smaller, faster, and, above all, cheaper hard-disk
drives soon to be announced. It has been the bitter experience of computer buyers since
the dawn of the industry that you should never, never make plans on the basis of industry
rumor. Equally bitter experience shows that you should never become committed to
software or hardware that won't allow you to take advantage of new products when the
rumors finally come true. CP/M users are fortunate that their operating system, so far,
seems flexible enough to expand as the technology does.

PRINTERS

For all its speed and futuristic flash, the main useful product of a computer is often
ordinary words on paper. A printer is a device that writes on paper at a computer’s
direction. There are several kinds, each with its uses and drawbacks.

Typewriter Printers

The typewriter, in the form of the Teletype, was one of the first /O devices. For our
purposes a typewriter is a printer that prints one character at a time by aligning a raised

33

34

Hardware for CPIM

character image and driving it into ribbon and paper. There are three Kinds in common
use on CP/M systems: the daisy, the thimble, and the ball (see Figure 2-11). Typewriter
printers produce what advertisers like to call “letter-quality output™: the fully formed,
handsome, highly readable characters that distinguish the best business correspondence.

Daisy, THIMBLE, BaLL. Daisy printers carry the type image on the radial spokes of a
wheel. They select a letter by turning the wheel, then bang the chosen spoke tip against
the platen. The thimble typewriter is similar, except that the letters are placed at the tips
of the slit edges of a cup-shaped wheel (Figure 2-11). The ball typewriter is just the
familiar Selectric mechanism, widely, and cheaply, available in reconditioned time-
sharing terminals. The venerable Teletype is still to be found, but its slow speed and
limited character set make it undesirable as compared with modern typewriter printers.

TypING SPEED. Daisy and thimble typewriters operate at speeds up to 55 characters per
second; any of them can write one line of a business letter in just over a second, or fill a
manuscript page in less than a minute. This is adequate speed for many applications, but
not for all. Bulky output such as whole chapters of books or the listings of long programs
can tie up the machine for many minutes, even hours. Unfortunately there is no faster
way to get high-quality printing from a small computer. Ball typewriters cannot print
faster than an ordinary office machine (around 15 characters per second) and should be
used where the volume of printing is small.

SeeciaL FEatures. Daisy and thimble printers contain their own processors. When
ordered with the right options, most of them can center, underscore, justify, and do
proportional spacing on their own. These features, like the special features of terminals,
are invoked by sequences of control characters. But unlike the terminal features, the
capabilities of the typewriter are usually ignored by the popular text-formatting prog-
rams, which handle the same functions from the computer and use the typewriter strictly
as an output device. As with terminals, there is no standardization of control sequences.

photo: PAWEKPIX

FIGURE 2-11
Three ways of doing letter-quality printing: the familiar ball, the thimble, and the daisy.

S

Printers

PRINTER KEYBOARDS. Typewriter printers are available in two models: with a
keyboard (KSR, for Keyboard Send Receive) and without (RO for Receive Only). With
a keyboard, a typewriter printer can be used like an ordinary office machine, but it
doesn’t make a very good one because the human factors are all wrong. The touch is not
pleasant, and there is sometimes a split-second delay between the keystroke and printing
that is maddening to a touch typist.

Sometimes a printer with a keyboard can be useful in a CP/M system. One can be
used as substitute for the terminal, or as an input device when testing a program. But
generally a printer’s keyboard won’t be used often enough to justify its cost.

Matrix Printers

The other printer technology in common use on CP/M systems is that of the matrix
printer (see Figure 2-12). This device has a print head that contains a vertical row of stiff
wires pointed at the paper. Each wire can be driven against the ribbon and paper to make
a tiny dot. The print head sweeps across the page; as it moves the wires are fired in
combinations so that the dots form characters. Each character is printed in a character
cell whose height is determined by the number of wires in the print head and whose width
encloses some number of steps at which the wires may fire. Each character is formed
within a rectangular matrix of possible dots, hence the name “matrix printer.”

photo: PAWEKPIX

FIGURE 2-12
A typical small matrix printer.

35

36

Hardware for CPIM

Matrix Print QuaLiTy. The dimensions of the matrix determine the definition of the
letters. The coarsest resolution is a five-by-seven matrix (five dots wide, seven dots
high). A matrix that size doesn’t allow the descenders of characters such as “p” and “g”
to fall below the line; when such a printer offers a lowercase character set, its “g” will
often resemble its “(@.” Most printers use a seven-wide by nine-high matrix that allows

true descenders and more readable output.

PrinT SPEED AND CosT. Matrix printers can be faster than typewriters—the fastest
can operate at above 200 characters per second, although 100 characters per second is
more usual. Matrix printers are considerably cheaper than typewriters because their
mechanical parts are much simpler.

SpeciaL FEATURES. The manufacturers of matrix printers are engaged in hot competi-
tion. This expresses itself not only in price but in the variety of optional features. Many
matrix printers offer a graphics mode in which the application program can control the
placement of individual dots on the page. Elaborate pictures, even fairly good halftone
images, can be drawn in this way. The programming required to create a picture or a
graph is equally elaborate, of course, and such programs will be device dependent.

CHARACTER FonTs. Some matrix printers offer variations in the way they form
characters. Double-width characters and boldface characters (every dot struck twice for
a darker image) are common features (see Figure 2-13). A few printers have ways of

ABCDEFGHIJELMNOFERSTUVWXY ZARCDEFGHI JKLMNOFRRSTUVKWXY Z

abcdefghi jklmnopgrstuvwryzabocdefghi jklmnopgrstuvwxyz
1234567BF012345678F0 ' #5747~ () X=+< 2 HELE" () k=472

EFPSON MAKES MORE FRINT MECHANISMS THAN ANYONE ELSE IN THE WORLD.
Epson makes more print mechanisms than anyone else in the world.

ABCDEFGHI JELMNOFPARSTUVWXY Z
abocdefghiijiklmnopqqrstuwvwxy=s
12T;4S5S46578990 =2 — " HEBLET () X=4+< >
EFSON MaAakES MORE PRINT MECHANISMS
Epson makes more primnt mechanmnisms

ABCDEFGHIJKLMNOPERSTUVMWXYZ
abcdefghijklmnopgrstuvwxyz
12345467890 —"#$A&L™ () kx=+<{>7
EPSON MAKES MORE PRINT MECHANISMS
Epson makes more print mechanisms

ABCDEFBHIJKLNNDPORSTUVKAYIRBCDEFGH T e LUNDPERSTUVWA Y

abcdetghi jklmnopgrstuvervzaboderghi Jklanopgrstuvmiv

P STYECDO DT RECOEE |y SR EXTERE § PSR B A

N FRINT MECHANIZNS THAN AHYONE ELSE IN THE WORLD.
Spson gakes wore print aechanisas than anyone eise in the world.

FIGURE 2-13
Samples of the various fonts the printer of FIGURE 2-12 can use, provided it is sent the right
control sequences. Other printers have similar abilities.

e

—

Printers

multiplying the effective number of dots in the character matrix. By moving the paper in
tiny increments and restriking the letters, they can get the effect of a 14-by-18, orevena
21-by-36, matrix. This produces correspondingly better definition of the characters, but
at the cost of slower printing since every letter must be struck two or three times. Some
advertisers claim that they can obtain letter-quality printing from their matrix printers by
using such techniques. You should verify such claims by inspecting actual output.

Other Printers

Printer technology has been developed to high levels among large computers. Train and
band printers place a print hammer behind every character position across the page and
spin a strip of type slugs in front of the page at high speed. When the type slug bearing the
right character nears a character cell, that cell’s hammer fires. In this way these printers
can produce an entire line of print in one rotation of the type carrier, printing at a rate of
hundreds of lines a minute with good quality.

At this writing no such printer is available at a price consonant with the cost of a
CP/M system. However, if CP/NET is used to distribute the use and the cost of a printer
among several systems, the fast technology becomes economical. And as small compu-
ters proliferate a market is being created that should eventually bring about the develop-
ment of a band printer, suitably scaled down in price and speed, for small systems.

Printer Interfaces

SERIAL INTERFACES. All printers suitable for CP/M are available with an RS-232
interface (described under “Terminals™). This interface is usually the best choice for a
printer; it allows the printer to be swapped, either between systems or during repairs,
Like a terminal, a printer has to be set to agree with the processor on the matters of
transmission rate, number of stop bits, and parity checking.

PrINT BUFFERING. The printer puts characters on paper at a very slow rate, in
electronic terms. A typewriter proceeding at the rate of 50 characters per second is
consuming data at an effective bit rate of about 500 bps. Not only is this slow, but it does
not correspond to one of the standard transmission rates. If the processor sends at 300
bps, the printer will have to idle between letters. If the processor sends at 600 or 1200
bps, the printer will run at full speed but will quickly fall behind the computer. Most
printers contain storage for some number of characters until they can be printed; if this
buffer fills up and the processor continues to send data, characters will be lost or garbled.

PRINTER HANDSHAKING. The solution to the foregoing problem is to have the printer
tell the processor when its buffer is nearly full and to have the processor respect this
signal and halt transmission until the printer has caught up. This exchange of signals is
called handshaking. With handshaking the printer can run at its maximum speed with no
danger of losing data. One of the RS-232 signal lines can be used for just this purpose.

37

38

Hardware for CPIM

Most printers can be set up to signal when they are not ready to accept data because their
buffer is full, their paper has run out, or for any other reason. The printer control
programming in CP/M must also be set up to recognize the printer’s signal (see Chapter
15).

PARALLEL INTERFACES. Some printers provide, instead of the RS-232 serial interface,
a parallel interface of some kind. There is no particular standard for signals on a parallel
interface, but one arrangement is so common on older machines that it nearly qualifies as
such. This is the Centronics interface, named for one of the first inexpensive matrix
printers available to hobbyists. The Centronics interface is common, but the RS-232 is
the preferred interface because of its interchangeability.

OTHER 1/0 DEVICES

The basic CP/M system has electronics, a terminal, diskettes, and usually a printer. But
the possible choice of 1/O devices is far wider than that. Machines that use the S- 100 bus
can be equipped with an exciting array of special-purpose equipment. Here are a few
examples:

speech recognition units for voice control of programs
voice response units so the program can talk back

music synthesizers for computer-generated music

color graphics output to a video monitor

video image processing for computer recognition of images
digitizing tablets for the input of maps and handwriting
plotters for drawing graphs and blueprints on paper

@ e

=0

There isn’t room in this book to discuss these interesting machines. Each provides
solutions to problems in a specialized domain. If you have the problem, then you can
build a solution based on your CP/M system.

Chapter 3

Software for CP/M

CATEGORIES OF SOFTWARE
VERSIONS OF CP/M

THE MONITOR
The Console Command Processor

FILE COMMANDS
UTILITIES
LANGUAGE TRANSLATORS

APPLICATIONS
Word-Processing Programs
Electronic Worksheets
Other Application Packages

SUMMARY

40
40

41
43

44

45

45
45
46

47

39

40

Software for CPIM

This chapter will take you on a brief tour of the software used with a CP/M system. Wwe'll
identify and name the important components and sketch their functions. As in the last
chapter, we have two aims: to learn the jargon and to give some guidelines for the

shopper.

CATEGORIES OF SOFTWARE

The name “CP/M” refers to a package of programs written and published by Digital
Research. For most users that package is not sufficient software. You or your dealer will
add other programs to make a complete system. It will be easier to talk about this
collection of software if we put the programs into categories by their functions.

Tue Monitor. The Monitor is a group of programs that manages the detailed
operation of the system. We’ll discuss it briefly here; its workings are described for
programmers in Chapter 10 and beyond.

THE FiLe Commanps. The file commands are a group of small, often used programs
that we cover in Chapter 5. They make it possible for you to manage the file system and
the I/O devices from the terminal.

Tue Urirmies. Utilities are programs whose function is to copy and transform files.
The most important ones are called PIP and ED, each of which has a later chapter to
itself (Chapters 6 and 7). You’ll be adding other utilities to the ones that come with
CP/M.

LANGUAGE TRANSLATORS. Language translators are programs used to convert state-
ments in some programming language into machine language. The CP/M package
contains only one, an assembler. Your collection is bound to include others.

AppLicaTiONs. The programs in the first four categories fit the definition of an
operating system that we gave in Chapter 1: they are programs that apply the computer to
the job of managing the computer’s affairs. The remaining category includes all
programs whose output is for the benefit of people rather than being directed toward the
needs of the system. Such programs are applications.

VERSIONS OF CP/M

Digital Research has published several versions of CP/M over the years. Each version
has had more capabilities than the last. MP/M is a similar system, but one designed to
control larger machines and to support several users at once. This book is written for
CP/M, but it applies to MP/M as well.

Each version of the system identifies itself when you call for a cold start. Wi
discuss how to cause a cold start in Chapter 5.

Versions of CPIM

CP/M1.4. The first version of CP/M to achieve wide use was called CP/M 1.4. There
are many copies of CP/M 1.4 in use, and it can still be ordered from the publisher. Much
of this book is applicable to CP/M 1 .4.

CP/M 2. A major revision of CP/M was released in 1979 and called CP/M 2. It has
been updated twice since; the version being distributed today is called CP/M 2.2. CP/M
2 contained many improvements on CP/M 1.4. To the user it brought easier typing
correction. It gave the programmer the ability to access disk files at random. It gave the
system builder much more flexibility in adapting CP/M to different kinds of disk drives.
This book is designed for use with CP/M 2.

CP/M-86. CP/M has been rewritten to operate on machines that use the Intel 8086
CPU (notably the IBM Personal Computer). Almost all of this book is applicable to
CP/M-86, because its use, and most of its programming conventions, are the same as
CP/M 2.

MP/M 1. MP/M was released at the same time as CP/M 2. MP/M is designed to
manage the resources of a machine larger than the usual desk-top computer, and to
deliver those resources to several users at once. Almost all of this book is applicable to
MP/M because Digital Research took pains to make the use and programming of MP/M
compatible with the use and programming of CP/M. MP/M has a number of commands
and programming features that are not covered here.

MP/M 2 aNp MP/M-86. These advanced operating systems have a number of addi-
tional features, but their use and programming is still compatible with CP/M 2. Many of
their new features are covered in the Reference section.

CP/M 3. Sometime in 1982, a new version of CP/M will probably appear. If Digital
Research continues its tradition of compatibility, the commands and programming
conventions of CP/M 3 will be substantially identical to those described in this book.

THE MONITOR

One component of CP/M remains continuously in working storage while the system is
running. It consists of three programs. Two of these work together to provide services to
other programs; the third provides services to the user.

PARTS OF THEMONITOR. The CP/M documentation refers to the first two as the BDOS
(Basic Disk Operating System) and the BIOS (Basic I/O System). They are described in
Chapters 10 and 15. The third program, whose purpose is to serve the system’s user, is
called the Console Command Processor, or CCP. The distinctions between these

~— programs will be made clear later. We'll refer to them collectively as the Monitor,

41

42

Software for CPIM

meaning that part of CP/M that is always present in working storage, monitoring the
activity in the system.

S1zE OF THE MONITOR. The Monitor takes up space in working storage. Its total size is
about 12K bytes. If the size of working storage is 64K bytes, then the amount available to
application programs is 64K less 12K, or 52K bytes. The CCP is not needed while an
application program is running; if its 4K of space is used, the amount available becomes
56K . Application programs have the option of using all of working storage, but if they do
so they lose all the services that the Monitor provides, so this is rarely done. Advertise-
ments for fee software sometimes specify the minimum amount of storage required; the
number may or may not be exclusive of the Monitor. A program that requires a “54K
CP/M system™ may require that the machine have 64K of working storage.

ControL OF 1/0. The Monitor justifies the space it takes by performing several
essential functions. Its first duty is to control the operation of all the /O devices of the
system. It is the Monitor that contains the machine instructions that read and write
characters on the terminal, that cause the disk drives to select, seek, and transfer data,
and that send data at the correct rate to the printer. Since these instructions are in the
Monitor, they need not be included in any application program. That makes applications
easier to write (I/O control code is the trickiest programming of all) and makes them
smaller.

SERVICE REQUESTS. The Monitor makes the devices accessible to programs by pro-
viding for service requests. There are standard machine instruction sequences that allow
one program to call upon the services of another. An application program can call upon
the Monitor for a number of services. Services are defined for reading and writing at the
terminal, at the printer, and at other devices. There are a number of services relating to
access to files. By way of these service requests, a program can access all parts of the
system without itself containing any device-control logic.

ConTrOL OF THE FILE SysTEm. Besides controlling the operation of the disk drives,
the Monitor contains the central logic of the CP/M file system. It is the Monitor that reads
and writes the file directory on a diskette, decides where a file’s data shall be placed, and
finds the data again when needed. The Monitor contains services by which a program
can read and write the data in a file without concerning itself with either the details of
disk operation or the location of the data on the disk. Other services allow a program to
create a file, to rename it, and to delete it.

ADVANTAGES OF THE MoNITOR. Great economy is achieved by centralizing all the
logic of device and file control in the Monitor. If this logic had to be repeated in every
program in the system, disk space would be wasted in storing repetitive copies of that
code, but this is the least of the savings. If the Monitor’s functions had to be repeated in
every program, surely some of them would get it wrong, or do it differently than others.
Consistency would vanish, and errors would be introduced. Further, the instructions

The Monitor

used to control one kind of terminal, printer, or disk drive differ from the instructions
needed to drive one of another kind. The number of possible combinations of CP/M
hardware is astronomical. If the functions carried out by the Monitor had to be done by
the programs, then every program would depend on the particular combination of
hardware for which it was written. But the service request interface provided by the
Monitor is uniform across all CP/M systems. The service to read a file is the same in any
system, regardless of the kind of disk drive that system may have. By containing and
hiding the device-dependent logic, the Monitor makes it possible for software to be
exchanged between systems. That in turn makes it possible for a profitable software
publishing industry to exist, and that has led to the huge number of application programs
that you can buy.

The Console Command Processor

When the system is idling between programs, the Console Command Processor (CCP)is
in charge. This part of the Monitor exists to be the interface between the user (you) and
the operating system. Its job is to accept a line from the terminal and then see that the
work the line calls for is carried out.

Commanps. The line that you type and that the CCP acts on is called a command.
Every operating system provides a command language, although in this context the word
language is used rather loosely. Few operating systems (and CP/M is not among them)
provide a true language of commands in the way that a programming language is a
self-consistent artificial language. The phrase refers to the set of all commands that the
operating system can accept, and the rules for forming them.

Form oF Commanps. CP/M’s command language rules are defined by the CCP, and
they are very simple. To the CCP a command is a line of characters broken into groups by
delimiters (one or more spaces). The first group, or word if you like, is the command’s
verb: it specifies what is to be done. The rest of the line contains the command’s
operands. They specify what is to be acted upon. The verb is always the name of a
program. Programs are the verbs of the system. The operands give the program any
information it needs about what it is to work on, and optional things it should do.

Commanp Execution. The CCP’s method of carrying out a command is simple.
When you signal with the return key that the command has been completely typed, the
CCP takes the first word of the command and calls on the Monitor to locate that word as
the name of a file that contains a program. The Monitor locates the file on disk. The CCP
reads the file—which contains an object program—into working storage and then calls
the program that has been loaded. The CCP leaves the rest of the command behind in a
known location in working storage for the program to reference. When the program is
finished, the CCP regains control and waits for the next command.

43

44

Software for CPIM

FILE COMMANDS

Other than the Monitor and the CCP, the operating system consists of command verbs,
that is, of programs that can be loaded by the CCP. These commands enable you to
construct and then use the application programs.

The file commands are the ones that are used most often. Chapter 5 describes them
in detail. They make the services of the Monitor directly available to the user. There are
commands that let you list the contents of a directory to see what files exist or to learn the
size of a file, to erase a file, or to rename it. Some of these commands are used so
frequently that the programs that implement them have been included in the body of the
CCP. These can be carried out without having to load them from disk. As far as the user
is concerned, the only difference between these resident commands and any other is that
they execute a bit more quickly.

UTILITIES

A utility is acommand that moves or changes a file’s contents in some standard way. The
simplest utility is the TYPE command. It displays the contents of a file on the screen of
the terminal. TYPE is called so often that it too has been embedded in the CCP. SAVE
and LOAD are special-purpose utilities used to build programs; they are described in
Chapter 12.

PIP. The most important utility is PIP (for Peripheral Interchange Program, named
after similar programs in other operating systems). PIP is used for moving files between
one device and another: from one diskette to another, from diskette to printer, or from
any device to diskette. It is examined at length in Chapter 6.

Eprrors. An editor is a program that lets you build and modify a file from the
terminal. The file may be a business letter, a list of names and addresses, the statements
of a program, or anything else that can be expressed in characters. An editor presents the
contents of the file at the screen and takes changes from the keyboard. When the file has
been built, extended, or changed as you desire, the editor writes it back onto diskette.

ED. One editor is provided with CP/M; its name is ED. ED descends from a long line
of similar editors going back into the dawn of computing. Its functions are organized for
easy use from a typewriter terminal and might seem awkward to someone new to
computing (or friendly and familiar to one who is new only to CP/M but experienced
with computers). The concepts and uses of ED are described in Chapter 7.

OtuEr Epitors. ED is far from being the best possible editor. There are a number of
editor programs available for CP/M from other software publishers. A good full-screen
editor should be one of your first software purchases. See the discussion of word-
processing packages later in this chapter.

—

Language Translators

LANGUAGE TRANSLATORS

Only one language translator is provided with CP/M, an assembler program named
ASM. Your system will undoubtedly have others, which will be bought from other
software vendors. In Chapter 11 we discuss the differences between translators and how
to select the one(s) you need. All language translators can be thought of as parts of the
operating system, as they are used to create other programs rather than as an end in
themselves. Translators are called as commands, like all other programs under CP/M.

INTERPRETERS. Interpreters accept program statements from the terminal (calling
upon the Monitor to read them), and contain some of the functions of an editor in that
they allow the programmer to look around the program and make changes in it. At the
programmer’s option they may read program text in from a file, or save the finished
program in a new file.

CompiLers. Compilers always use the file system. They read a file of program text,
translate it into machine language, and write the translation as another file. A compiler or
assembler (an assembler is a special case of a compiler) will usually produce another file
containing a listing of the program.

APPLICATIONS

As we said in Chapter 1, applications—programs that arrange and display data for the
benefit of people—are the true purpose of a computer system. Specific applications may
be written, possibly by you, for your own purposes. Several types of application
programs are so useful, and so difficult to write, that they are usually purchased as
program packages.

Word-Processing Programs

A word processor is a program or a package of programs that allows you to create
documents of all kinds with the computer. Word-processing packages are reliable and
easy to apply. A good one can justify the whole cost of a computer installation. Word
processing has two parts: creating the document and printing it.

FuLL-ScREEN EDITORS. Every word processor package contains a full-screen editor, a
more sophisticated version of ED. A full-screen editor uses the screen of the terminal as
a window onto the file. The file’s contents can be moved under the window like a scroll
sliding under glass, up and down at will. The cursor may be placed anywhere in the
window and new or changed data typed into the file. The process is simple and natural;
Just point to the place where a change is to be made and type the correction. The change is
recorded in working storage as it is made. The ease and speed of typing with a good
full-screen editor are truly remarkable.

45

46

Software for CPIM

Print FORMATTING. The second part of word processing is the display of the docu-
ment on the printer. The formatting abilities of word processors go far beyond simple
printing. All of them provide for automatic pagination and page numbering. Most can
justify the output so that all lines are the same length. When used with a daisy or thimble
printer, most can provide for automatic underscoring, bold printing, superscripts and
subscripts, and so forth. Given the right hardware (and with considerable practice on the
part of the operator), a word processor’s output can approach the quality of typesetting.

SPELLING CORRECTORS. Several publishers have produced programs that will read a
document file and compare it with the words in a spelling dictionary file. When a word in
the document can’t be found in the dictionary file, the program displays it at the terminal.
If the word is truly misspelled, the user can correct it. If it is a correct word, the program
will add it to the dictionary so that it will be found next time.

Electronic Worksheets

A few years ago a genuinely new concept in computer applications was invented: the
electronic worksheet. The first such program was called Visi-Calc ™ it is available for a
number of personal computers (but not for CP/M systems). The concept has since been
copied by other publishers, and similar programs are available for CP/M systems. Like
word processors, worksheet programs are easy to use and can enable the machine to
justify its expense quickly. A worksheet program creates in working storage a large array
of cells, similar to the columns and rows of an accountant’s worksheet. The user can
move the screen of the terminal over the worksheet and view the contents of the cells. A
number or a descriptive title can be placed in any cell.

The power of the worksheet idea arises from the fact that the user can also put a
formula instead of a number into a cell. The formula can specify that the cell’s contents
are to be some arithmetic combination of other cells. A cell at the bottom of a column can
be defined to hold the sum of all the numbers above it, or a percentage of two other cells,
and so on. Whenever one cell is changed, the program passes over the whole sheet,
recalculating every formula. Thus a change in a detail amount causes an instant,
automatic change in the total amount as well. A change of a markup percentage in one
corner of the sheet is instantly reflected as a change of gross and net profits elsewhere on
the sheet.

Other Application Packages

There are other packages that you might want to have, depending on the use to which
your system will be put.

AccoUNTING Packaces. Business accounting packages contain programs that keep
the standard accounting information and prepare the usual accounting reports: general
ledger, accounts receivable and payable, etc. It is hard to write a generalized accounting

Applications

package that will suit the requirements of every user. Such packages must be studied
very carefully to make sure that they meet your needs.

MAILING List PROGRAMS, There are programs that will maintain a file of names and
addresses. The list can be sorted in various ways, and names can be selected on the basis
of zip code or other criteria. All names, or just selected ones, can be printed onto mailing
labels ready for attachment.

SORTS AND REPORT GENERATORS. A good general sort program is an important tool in
mOost computer systems. A sort is a program that will read a file and write a copy of it,
with the records of the file arranged in sequence according to their contents, An amazing
amount of processing can be done with only an editor and a sort. The editor (or any other
program) is used to create a file of records in a regular format, with the same kind of
information at the same position in each record. Then the sort program can be used to put
the records in order by any combination of record fields. To understand the use of this
idea, think of a catalog of any collection of similar things, phonograph records, for
instance. Imagine the usefulness of being able to sort the catalog on any of its character-
istics—catalog number, performer, title—and to print the resulting sorted list.

Report generator programs take the next step beyond simple printing. They read a
sorted list of records and, at your direction, produce a formatted report of what they find.
A report generator can be used to exclude or include records on the basis of their content.
It can count records and keep running totals and subtotals of numeric fields, as well as
decorating the report with titles and page numbers.

DATaBASE SysTEMS. The word “database” has been badly abused in recent years.
Often a simple report generator will lay claim to the word. A genuine database system
does a great deal more than select records and print reports.

A database system maintains a file of information in such a way that it keeps not
only the records, but the relationships between the records as well. For example, a
library might have separate files of books, of authors, and of subjects; a report generator
would allow records of one file to be selected and displayed. A library database would
manage all the records, linking information about authors to records of the books they’'ve
written and linking those in turn to their subjects. A true database system will also be able
to present another program with only the information the program wants, in the format
the program needs without regard to the format used to store the data.

SUMMARY

With this chapter we’ve finished naming the parts of a CP/M system. If you have a
system, you’re ready to turn to Chapter 5 and begin learning how to use it. If you are still
shopping, you have enough of the jargon to understand a salesperson’s talk.

47

48

Chapter 4

Management
Problems

BUYING HARDWARE AND SOFTWARE
Shopping for Hardware
The Importance of Advice
Purchasing Software
Evaluating Software

SETTING UP THE COMPUTER WORKPLACE
The Terminal
Diskettes and Drives
The Processor
The Printer

PLANNING FOR DISASTER
File Backup
Insurance

DATA SECURITY
Planning for Security
Computer Crimes

49
49
50
50
51
52
52
53
53
53

54
54
54

55
55
56

Buying Hardware and Software

This chapter addresses some topics related to managing a small computer installation.
We'll talk about the problems of owning a system, especially when it is part of a business
organization. Unlike the other chapters, this one doesn’t aim at preparing you to operate
or program a CP/M system. If that is your immediate interest, skip ahead to Chapter 5 or
Chapter 9.

We'll look at four problems: first, the difficulty of buying a computer system,
especially computer software; second, setting up a good workplace for the machine and
its users; third, planning for breakdowns and disasters; and fourth, keeping data secure
against loss, theft, and fraud.

BUYING HARDWARE AND SOFTWARE

In the preceding chapters we've covered most of the jargon of the small-computer
marketplace. Having learned that, you’re ready to talk to a computer salesperson, or to
read computer ads, with some degree of comprehension. However, as soon as you begin
to do so you will be struck by how disorganized the computer marketplace is. The longer
you shop, the more it will come to resemble an Arab bazaar crossed with a political
convention.

Shopping for Hardware

Computers carry prices similar to those of a large office copier or a compact car, but
buying a computer is nothing at all like buying one of those products. There are several
good reasons for this.

THe CompUTER’s CoMPLEXITY. The first reason is that a computer system is many
times more complicated than any other piece of equipment. Think of all the hardware
options we covered in Chapter 2. Ponder the different kinds of application packages we
sketched so briefly in Chapter 3. The computer shopper is faced with an endless series of
choices.

TuE MARKET’S CoMPLEXITY. Second, the small-computer industry is dominated by
very small, very young companies. These companies must deal with constant technolo-
gical changes and with a chronic shortage of trained staff. There are several hundred
companies, almost all small, making CP/M-compatible systems or hardware bits to plug
into them. There are several hundred more firms publishing software for CP/M systems.
The growth of the industry since its birth in 1976 has been breathtaking; it has been a
striking demonstration of the power of a free-market economy. However, few of these
firms are large enough to support mass-market advertising or a large marketing staff.
There’ll be no tailored salesperson coming around to court you; you'll have to seek out
the products you want.

Tue NEED FOR TASK DEFINITION. Many people who go shoppin g for a computer have
no clear idea of what they want the system to do for them. Without that, neither shopper

49

50

Management Problems

nor dealer can evaluate hardware or software. There are many ways in which a computer
can make itself useful. You must isolate one task for it to do—a task that when automated
will return the computer’s cost over the period during which you'll depreciate it. Having
picked that task, define it as clearly as you possibly can.

Use the task definition as the benchmark against which you measure the products
you see. The task definition will limit the eligible systems and let you talk specifics with
vendors. Your shopping will be greatly simplified. Keep in mind, however, that a
computer is a general-purpose tool. Once it’s installed, you will constantly find new uses
for it. Provided it meets your task requirements, the system that can be extended or
upgraded most easily is to be preferred.

The Importance of Advice

There’s a huge number of products available and more appear every day. Many are
incompatible with each other; not a few are unreliable or are poorly supported by their
makers. You haven’t a prayer of sorting them out on your own without months of study,
which is a waste of the time you need for running your own business. You must make use
of someone else to winnow the market for you and propose a comprehensible choice of
products that meet your task definition.

UsinG A ConsuLTanT. One way to get advice is to hire a consultant. A consultant is
simply a person who knows more than you do and who will share that knowledge for a
price. A considerable number of people have hung out their shingles as small-computer
consultants in recent years. There isn't any objective standard for consultancy, no
licensing board or examinations to pass. Therefore, you must be extremely careful about
hiring a consultant. The one you want is the one who knows as much about your business
as about computers. There isn’t much point in hiring computer knowledge when the
possessor of that knowledge doesn’t have the background to relate it to your require-
ments.

RELYING ON A RETAILER. Most cities of middle size and larger contain retail computer
stores. There are national franchise groups such as the Computerland chain, and many
independent dealers. Retail computer dealers are in a position to know the market, or at
least their own product line. Dealers have a strong motivation to select and stock only
solid, reliable products. Dealers are usually pressed for time and short of staff, and so are
unlikely to be patient with vague questions. However, if you present a clear definition of
the job you want a computer to do, the dealer should be able to propose a complete
system tailored to that job.

Purchasing Software
CP/M alone is not sufficient software for anyone but the hobbyist. You’ll need to buy

software from other sources. Except for a simple assembler, CP/M contains no language
translators; you’ll buy one or more. You will almost certainly want to supplement ED

Buying Hardware and Software

with one of the word-processing packages that contain both a full-screen editor and a
print-formatting program. A worksheet program is always useful, as is a report gener-
ator. If you plan to apply your system to commercial accounting, you’'ll buy software for
that.

IMPORTANCE OF SOFTWARE QuALITY. The quality and usability of an important
software package can decide the success or failure of your system. A package that is
poorly documented, or full of errors, or simply unsuited to your needs, can cause you to
waste the price of your hardware several times over in lost time and duplicated effort. On
the other hand, a good package that matches your needs may enable the system to pay for
itself in weeks.

THE SOFTWARE MARKET. A broad and vigorous market in software has sprung up in
recent years. Thousands of people and hundreds of small companies are competing for
your software purchases. Yet it is difficult to shop for software in the present market.
Advertisements appear only in computer magazines and are superficial at best—long on
color and dramatic claims, and short on the detailed functional information that would let
you decide whether or not the advertised package will do what you need. A reliable
computer retail dealer can be a great help in choosing software.

Lack oF ConNsuMER INFORMATION, A software package is at least as complex as an
automobile and the differences between, for example, two word processors are much
greater than the differences between two passenger cars. As yet no publication has
appeared to do for the software industry what the Times Literary Supplement does for the
publishing industry or Road and Track and others do for the automobile industry.

Evaluating Software

There are four points on which to evaluate a software package: function, documentation,
support, and price.

Funcrion. The first point is the most important: Does the package promise to do
everything that you require of it? In order to answer the question you must know what
you want done, and know it in detail. Then you must find out what each package
promises. At present the only reliable way to do that is to read carefully through the
documentation for the package, which is usually available at a price.

DocuMENTATION. Poor documentation can make an excellent program unusable. The
quality of software documentation generally is very low indeed, but there are packages
whose documentation is clear and readable. The presence of cryptic, poorly written, or
incomplete documentation does not necessarily mean that the program is bad, but it does
mean that you will pay an extra, hidden price in time and effort in mastering the program.
You should mentally adjust the price accordingly.

SupporT. The term “support”™ describes all the human assistance included in the
purchase price of a package. Your vendor may offer to train you in the use of the

51

52

Management Problems

package, or to tailor it to your needs. The publisher will have some method of reporting
and fixing errors, and may offer a hot-line phone number that you can call for assistance.
All types of support are valuable and increase the worth of a package.

PRICE. Price is the last, and should be the least, consideration when you evaluate
software. A good package with good documentation and support is worth its price. A
poor package has negative value regardless of its dollar cost.

SETTING UP THE COMPUTER WORKPLACE

There was a time when a business computer required a special room with raised floors
and special air conditioning. Your CP/M system sits on a corner of your desk and emits a
faint purr, Its environmental requirements are easy to meet. That allows you to concen-
trate on making the machine’s environment good for the humans who use it. Giving
thought to the human factors of the workplace can make the total system—the machine
and its operators—run better. Some of the advice we’ll give here would seem trivial and
obvious, were it not for the many times the author has seen these simple principles
ignored.

The Terminal

The terminal is the toughest piece of hardware in the system. As long as it doesn’t stand
for hours in direct sunlight, and as long as nobody spills coffee or paper clips into its
keyboard, it will continue to work. But the terminal is CP/M’s primary human interface;
no other piece of the system offers more opportunities for optimizing the human factor.

SitinG THE TERMINAL. A terminal is used for typing; the typing is done from copy that
must be read, or is related to books and listings that must be referred to. The terminal can
be located to maximize the comfort of the operator in both reading and typing. The
terminal should sit close to a flat work surface where papers and books can be spread
convenient to the screen. Its keyboard should fall at the right height for a typist’s fingers
(this is true whether or not the main user is a touch typist). Study the layout of a
secretary's desk in a commercial office. There’s a well where the typewriter rests with its
keyboard several inches lower than the desktop. That design isn’t an accident; it’s the
result of experience. A high keyboard can lead to backache and subliminal tension,
things one can well do without when using a computer.

LigHTING THE TERMINAL. The lighting around the terminal is very important. Under
the best of circumstances the contrast and resolution of a screen are poorer than that of
print on paper. Glare from beyond the terminal or reflections from above it make the
screen hard to read. If the lighting is bad, the user will suffer from fatigue, and may even
get headaches, and will make more errors. It is important to have even, glare-free
lighting at the lowest level consistent with good reading of print.

Setting Up the Computer Workplace

IMPROVING THE IMAGE. There are usually things that can be done to improve the
image on the screen. The simplest thing, and one that is often overlooked, is to clean the
screen. The author has several times watched people unconsciously strain to read a
terminal whose only problem was a grimy screen; a wipe with a sponge made a drastic
improvement in the brightness of the display.

Most terminals have a brightness control in some obscure location. A careful
adjustment of the brightness of the image sometimes will make an amazing difference in
the clarity of the display.

The linearity (straightness, squareness) of the display and the display’s dimensions
can be adjusted by a service technician. One terminal, the Heath/Zenith H19, stands out
because its owner’s manual contains instructions for adjusting linearity, focus, display
height and width, and contrast.

Diskettes and Drives

Diskette drives need to be within arm’s reach of the operator. They also need to be kept
as clean and dust-free as possible. The drives ought to be well above the floor and located
where there is no chance of spilling or dropping anything on them. If you don’t dust
anything else in your office, dust around the disk drives. A tiny bit of lint between the
read-write head and the diskette can cause a read error, or worse, a badly written record.
Be fanatical about smoking around the drives; tobacco smoke condenses in a film on
everything. If you smoke, keep the ashtray as far down wind from the drives as you can
reach.

The Processor

The box containing the processor and other electronic parts has no special requirements
other than that it should not be overheated. Any location that lets you reach the reset
signal and allows a free flow of air around the machine is fine. If the electronic
components are in a separate cabinet, site the cabinet to allow the most work surface and
the least clutter of cables—not an easy pair of requirements to meet.

The Printer

The printer is the only noisy part of a CP/M system. In following chapters we’ll assume
you can see and hear the printer from the terminal, but that isn’t really necessary. The
cable between printer and processor may be several yards long. Consider getting a long
cable so you can move the printer into a closet or behind a couch, anywhere that will
reduce the noise level. Acoustic hoods are available for typewriter printers, and they
work very well. A cardboard box lined with old blankets will do a pretty good job as
well; paint it a tasteful IBM blue and nobody will ever guess.

53

54

Management Problems
PLANNING FOR DISASTER

A computer that is doing its job soon becomes essential to the business that employs it.
Such a business, whether in the home of a lone entrepreneur or one department of a large
company, must take steps to protect against the loss of the machine or its data.

File Backup

Backup is the term for making extra copies of important files. File storage media are
fragile. Files can be made unreadable by very simple, common accidents; they can be
erased by careless operation. You should know what the important files are and be aware
of the impact that their loss would have. If the diskette containing Accounts Receivable
was stepped on today, how long would it take to recreate it?

It's a good idea to keep two levels of backup for really important files. The most
recent copy can be kept near the computer, ready for a quick recovery. The generation
before that ought to be moved right out of the building. Then if a fire wipes out the office,
the older backup copy will still be safe.

It’s easy to make backup copies of files with CP/M; we'll go over the techniques in
Chapter 8. Your concern as the manager of the system is to set a reasonable backup
schedule for the important files and see that it is followed.

Insurance

The subject of insurance is a complicated one. The options open to you depend on your
situation and your locality. They should be discussed with your insurance broker. This
section sketches some of the possibilities.

INSURING THE HARDWARE. Most small businesses carry a business insurance package
covering them for both liability and for the loss of office equipment. When a CP/M
system is installed, it probably increases the value of the equipment in the office
severalfold, thus making the present policy’s coverage inadequate. Once the computer
becomes a part of your business, it will be the very first thing you would want to replace
after a fire or a flood (or, in California, an earthquake, for which a special endorsement is
needed). A computer-using business ought to insure its hardware for full replacement
value.

Most business policies do not cover losses that occur off the premises. Photo-
graphers and others who carry valuable equipment out to a job can buy an off-premises
rider for their business policies. A computer might need the same type of coverage.
Without it, a computer that is taken home for the weekend, or one on its way to a business
show, might be completely unprotected.

InsuRANCE AT HoME. Many CP/M systems are used in private homes. If you are
self-employed, the business equipment you keep at home is probably not covered by the
usual “unscheduled personal property” clause of your home insurance policy. Most

Planning for Disaster

home insurance policies do not cover equipment used for business at all! A special
endorsement must be purchased to cover the equipment in your home office. You may
find that your insurance company has a limit on such endorsements that was designed to
cover typewriters and file cabinets, not multithousand-dollar computers.

INSURING THE DATA. You can purchase a valuable papers rider for your business
policy. Such a rider is intended to cover the cost of recreating important records, and it
can be written to cover records kept in computer storage as well as ordinary documents.
Valuable papers insurance can be expensive, because it is written on the assumption that
only one copy of the insured documents exists. However, such insurance can be
purchased for any amount you desire. If you make weekly backup copies of critical files,
you may want to carry valuable papers coverage only in the amount needed to cover the
cost of recreating one week's data. With these data covered, and with second-level
backup copies stored off the premises, you can feel quite secure.

DATA SECURITY

Data security is the term used to describe all the techniques used to keep the content of
files secure from theft, fraudulent alteration, or unauthorized access. In one sense there
is no such thing as a computer crime; all the crimes so reported are just cases of fraud or
theft or embezzlement, no different from the same crimes committed in any other way.
Computers don’t allow new crimes to be invented, but they do permit the old crimes to be
carried out in new, and sometimes easier, ways.

Planning for Security

CRrEATIVE PARANOIA. Look at your CP/M machine and, for a moment, try to think like
acrook. Given unlimited access to the machine—and it’s the nature and greatest blessing
of small systems that one may have unlimited access to them—what could you steal
without detection? Could you generate a phony purchase order, disburse the amount,
and hide the transaction? Are there project disks that would be worth a price to one of
your competitors? Given the ease of duplicating files, how hard would it be to keep two
sets of books?

CP/M Lacks SEcURITY. Afterthat exercise in creative paranoia, it won’t reassure you
to learn that CP/M offers you no software help in securing your files. In CP/M 1, CP/M
2, and MP/M 1 any user can look at, copy, alter, or destroy any file. Data security in a
CP/M 2 system is entirely a matter of procedures and policies that are applied by people.

SEcuriTY INMP/M 2. Among the improvements in MP/M 2 are some provisions for
data security. Its new file system allows you to give a password to any file. A password is
a word that must be specified before the system will allow the file to be accessed. A file
can be set so that its password will be checked when the file is to be read, or when it is to

55

56

Management Problems

be written, or only when it is to be erased. You can add a measure of security by giving
read passwords to sensitive files and erase passwords to valuable ones.

Even if you have MP/M 2 and use passwords, you should not assume that your files
are secure. A person seriously bent on mischief will have no difficulty in discovering a
file's password. The password must be typed as part of any command that uses the file,
so a bit of unobtrusive peeping over the operator’s shoulder will reveal it. A clever
programmer can circumvent the file system and read the disk directly, bypassing all the
checks.

TREAT DISKETTES AS PAPER. Remember that computers don’t create new kinds of
crime, only new opportunities. Data security is a matter of controlling those opportuni-
ties so that the level of risk is no worse than it was in the paper system the machine
replaced. One way to do this is to treat data and diskettes exactly as you would treat the
same information if it were on paper. If simply locking the office door at night would be
security enough for the paper, then it’s security enough for the data. If papers with that
information would be locked in your desk or in a safe, then do the same with the
diskettes.

There might be papers—personnel information, say—that ought to be seen by only
a few people. If such information is on diskette, that diskette should be handled as the
paper file would be: kept under the personal control of the person responsible for it. This
is one area in which categorizing diskettes by their use (see Chapter 8) pays off.

SeEcuriTY WITH A HARD Disk. The use of a hard disk interferes with this scheme
because the data can’t be carried away from the machine and so remain accessible to any
user. Security may be achieved by carrying away on diskette something that is essential
to viewing the data. If the data are encrypted (encryption programs can be bought for
CP/M), the decrypting program can be kept on diskette in the control of one person. Or
perhaps the programs that access the data can be kept on diskette; the trouble of locating
and modifying a file without the aid of the program that built it might be deterrent
enough.

Computer Crimes

The great opportunity that a computer affords to a criminal is the ease with which data
can be copied. A diskette can be duplicated in minutes; it might take hours to copy the
same data on paper. Equally important, a copy of a computer file is indistinguishable
from the original. One can imagine a dishonest bookkeeper who has a CP/M system at
home. It would be easy to duplicate an office diskette, take the copy home where the files
could be “cooked” in safety, and substitute the copy for the legitimate diskette next day.
Backup copies are potentially more valuable to a thief than are the originals. They can be
borrowed for an extended period without being missed.

As the proprietor of a CP/M system your only defenses against such capers are to
enforce sensible precautions concerning the handling of diskettes, to choose your
employees carefully and pay them well, and to keep a constant watch, sharpened by the
exercise of creative paranoia, for signs of incipient wrongdoing.

Chapter 5

Comunon
Commands

LEARNING THE KEYBOARD

INITIALIZING CP/M
The First Time
Initializing with Reset
Initializing with Control-c

THE COMMAND PROCESS
Typing Commands
Uppercase and Lowercase
INTRODUCING THE FILE SYSTEM
Filerefs: Naming Files
Introducing DIR
Ambiguous and Explicit Filerefs
DIR with Ambiguous Filerefs
Using Drivecodes
The Drivecode Command
The STAT Command for File Information
The REN Command to Rename Files
The ERA Command to Erase Files
Protecting Disks
STAT to Change File Status
Summary of STAT

DISPLAYING FILES
The TYPE Command
Stopping Output with Control-s
Console Copy with Control-p

58

59
59
60
61

61
62
64
65
65
67
67

68
70
71
72
73
74
76
77

77
78
78
79

57

Common Commands

This chapter introduces the most common CP/M commands, the ones that all users need
every day. Anyone new to CP/M should read it, although if you are used to working with
computers you may find parts of it elementary.

This chapter is meant to be read while you are near the machine. The presentation
assumes that you’ll go to the keyboard and try out the examples as you encounter them. If
you work the examples, you will be teaching not only your mind but your fingers and
eyes; you'll remember the material much better, and boost your confidence in yourself
and the system as well.

LEARNING THE KEYBOARD

If you aren’t familiar with the keyboard of your terminal, look at it now. If, despite our
recommendation, you aren’t near your machine, look at Figure 5-1, and compare it with
your own keyboard soon.

ImporTANT KEYS. Locate the following keys:

the alphabetic keys
the numeric keys
the spacebar

the tab key

the backspace key
the shift keys

the linefeed key
the return key

4 tars
£TRL LoCK A

EEOEE e w u s @ Eme

FIGURE 5-1 S
A typical terminal keyboard, with the control, backspace, and return keys in the usual
58 locations.

Learning the Kevboard

If you’ve never used this terminal before, have someone disconnect it from the processor
(“take it off-line”) and then try all the keys out. Remember to reconnect it (“put it
on-line™) afterward.

Tue ReTURN KEY. That last key, return, is an important one. It is used to end all
commands. The system won’t do anything about what you’ve typed until you indicate
that you are done typing with a return. On a few terminals the return key is marked
“enter.” At least one terminal has both a “return” and an “enter”; if that's the case, ignore
“enter” and use “‘return.”

RETURN KEY IN ExampLES. In the examples you'll see later, each separate line is to be
ended with a press of the return key, unless you're explicitly told otherwise. Sometimes
a line in an example consists of nothing but a press of the return key. Rather than risk
confusing the printer (and the reader) with blank lines, we’ll indicate that the return key
should be pressed at that point by writing rerurn. That means “press the return key and
nothing else at this point.”

THe ContrOL KEY, Locate one more key, the control key. It is marked with some
abbreviation of the word control: “ctl,” “ctrl,” or the like (one make of terminal marks it
“alt”). The control key is like a shift key in that it gives different values to the alphabetic
keys. As with a shift key, you hold it down while pressing another key. The value that
results is not printable, but CP/M has a way of showing what control letter was typed.

DispLay oF ConTrOL LETTERS. Since the control letters aren’t really printable,
special action must be taken to show on the screen that one was typed. In many cases
CP/M will display a control letter using the “"X” convention: an up-arrow (1) or
circumflex (7), whichever one your terminal uses, followed by the letter for that key.
Thus when you type control-z, CP/M might show "Z on the screen.

ContrOL LETTERS IN ExampLES. CP/M makes heavy use of the control letters as
signals. When referring to a control letter in the text we’ll say, for instance, “control-p™.
When in an example you should use a control-letter as a signal. you'll see this: "P. That
means “at this point, hold control down and press P".

INITIALIZING CP/M
The First Time

Computer fans say “bringing up the system” to refer to the whole process of turning the
machinery on and getting it ready for use. It’s hard to give instructions for bringing up
CP/M when the hardware comes in so many arrangements. Presumably you've seen
your dealer do it; it isn’t hard. There are just two things you need to know about the
machine, other than how to turn on the power.

Finp THE A-pRIVE. The first thing to know is: Which diskette drive is the A-drive? The
A-drive is the drive from which the hardware will attempt to load the CP/M Monitor (the

59

60

Common Commands

part of CP/M always resident in working storage). Your drives ought to be labeled “A”
and “B” (and “C”. . . how many have you?). If they aren’t marked, you'll have to find
out which is which from someone who knows (then label them).

Finp THE Reser ConTROL. The second thing you need to know is the location of the
reset. This is usually a push button or a key. It may be located in an awkward place on the
back of the processor cabinet. When the reset signal is given, the hardware is completely
reset to its initial state. Then the disk hardware automatically selects the A-drive and tries
to load the Monitor into working storage. This is called bootstrap load, or simply boot.

Practice DiskeTTES. Once you’ve found reset and the A-drive, obtain two diskettes
with files on them. The files should not be important ones; if they are important you
might be overcautious when experimenting with commands. Have copies made of two
diskettes and use the copies. Be sure to have the diskettes made bootable. That means
that there is a copy of the Monitor on each, for the hardware to load upon reset.

Turn the system on, put a practice diskette in the A-drive, and reset. The A-drive
will be selected, and a moment later a message will appear on the screen. This sign-on
message describes your version of CP/M (as in Example 5-1). It states the size of
working storage and the version number of CP/M. The examples in this book were taken
from CP/M version 2.2. Your system may use a different version (see “Versions of
CP/M” in Chapter 3).

Tue CCP PrompT. Below the CP/M message will appear a prompt from the Console
Command Processor, or CCP. Most programs that read from the keyboard issue a
prompt; that is, a short message indicating that they are ready for you to type. The CCP
uses “A>" as a prompt.

Initializing with Reset

TroE ErrecT OF RESET. Reset completely refreshes the state of both hardware and
software. It halts all activity in the system instantly. Then it causes the disk I/O interface
circuits to load a copy of the first sector of the first track of the diskette in the A-drive into
working storage.

Those data ought to be a small machine-language program that contains the logic

EXAMPLE 5-1
A typical CP/M logon message, displayed at the end of a cold start operation, contains both
the size of working storage and the version number of CP/M.

64K CP/M vers 2.2
A>_~

Initializing CPIM

needed to load the rest of the Monitor. The Monitor program’s instructions occupy the
rest of the first few tracks of the diskette.

BoorsTrAP. The one-sector program loaded by the hardware is called a bootstrap
loader, after the old saying “to lift yourself by your own bootstraps.” The loader is the
bootstrap by which the system loads itself. From that name has come the use of
“bootstrap™ to mean the process of initializing the resident part of an operating system. If
you are asked to “boot the system,” that means to “press the reset button.”

CoLp Start. The bootstrap provided by reset refreshes all of the Monitor, and has
come to be called a cold start (or even a “cold boot™) because afterward the system starts
out cold, from the beginning.

HAzarDs oF RESET. Reset is not to be used lightly! It can be used to get the system
going after a hang-up of some kind, and it can be a very convenient panic button. But
think before you use it. Any program executing will have to be run again from scratch. If
adisk drive is selected and writing at the moment you reset, the data being written will be
scrambled. If the data are the file directory, files may be lost. You should use reset either
when nothing is going on in the system, or when the system is irretrievably fouled up.

Initializing with Control-c

A partial bootstrap can be obtained almost any time by entering a control-c at the
keyboard (hold the control key and type “c”—see the section on “Learning the
Keyboard”). This is called a warm start (or, heaven help us, a “warm boot™). It causes a
reset of the software by the software. A warm start does not reset the hardware, so it
cannot cause bad data to be written to disk. It does end any running program. It causes
the Monitor to be reloaded from the A-drive, in case the storage copy of it had been
damaged.

Because it is less severe, a warm start with control-c is to be preferred to a cold start
with reset. Use the latter only when the system doesn’t react to the former.

THE COMMAND PROCESS

Let’s repeat some information from Chapter 3. Whenever your CP/M system is idling
between jobs, it is under control of the Console Command Processor (CCP). The CCP is
waiting for a command to be typed by you. You type the command using certain aids
we’ll describe shortly, and you signal that it is complete by pressing return.

Form oF A Commanp. The form of command accepted by CCP is:

verb operands

61

62

Common Commands

where the verb is separated from the operands (and the operands from each other) by
spaces. Here is an example command:

stat beesabig.bug
The verb is stat and the only operand is beesabig.bug.

Tue Commanp Process. When the CCP receives the command it assumes that the
verb is the name of a program. The CCP locates a program file of that name, loads
(copies) it into working storage, and calls the program. The CCP leaves the operands of
the command in a known location in working storage for the command program to find.

The command program performs whatever work it is meant to do, short and simple
or long and complicated. When the program is done it returns control of the machine to
the CCP. The CCP then waits for another command from you.

Commanp = ProGram = FiLe. This is CP/M’s command process: wait for a
command, load the program named by its verb, call the program, wait again. The
process is repeated each time you enter a command. A program, of course, is also a
file—a file of machine-language instructions. So, in CP/M, a command is a program isa
file.

There’s one exception to this. There are a few commands that are used so frequently
that they have been incorporated into the CCP. This saves the time of loading them from
disk. Except that they needn’t be loaded, the process of calling these commands is the
same. You’'ll be able to identify these resident commands in two ways. They respond
instantly, whereas ordinary commands take a second to load. And you won’t be able to
see their names in a file directory.

CCP CommenTs. If the line you type begins with a semicolon (;), the CCP ignores
that whole line. This gives you a way of making notes on the screen as you go. We'll find
a use for comment lines at the end of the chapter.

Typing Commands

Your First CoMMAND. Get your system initialized and ready for a command. CP/M
is ready for a command when the CCP is in control and waiting; this is signaled by the
appearance of the prompt A> at the left margin of the screen.

Type the command

dir

remembering to end it with return. The DIR command is absolutely safe; there is no way
you can hurt the system with it. CP/M will make one of two responses. Either it will reply
NO FILE as in Example 5-2a or it will reply with a list of names in four columns similai
to Example 5-2b. A CP/M 1.4 system will respond with NO FILE or with a single

S

The Command Process

EXAMPLE 5-2
Responses of the DIR command, first when there are no files on the diskette and, second, a
display of files on a typical diskette.

mx»dir
NO FILE
A>

Brdir

A: S5TAT COM : SYSGENM CoM : CCEINIT COM : DDT con
A: ED COM @ LOAD coM : ASM COM = SUBMIT com
A: DUMP ASM : TESTIT BAS : ¥sUn com

A

column of names. Anything else indicates that you misspelled the command verb, which
doesn’t seem likely. If you got the NO FILE response, then the diskette in your A-drive
has no files on it; obtain a better practice diskette.

Response To UNKNOWN Commanps. Now pretend to make an error while typing dir.
Type

door

(and return). It is very unlikely that your diskette has a command program named “door”
on it, so the response should be as shown in Example 5-3. This is the normal CCP
response when it can’t find a command program to match your verb. The CCP caused the
Monitor to search the directory of the diskette, looking for a program named “door.”
There was none. That being the case, the CCP gave you its equivalent of “Huh?,” which
is to repeat the command verb with a question mark after it.

CoORRECTING WITH CONTROL-X. Now pretend again to make a typing error, but this
time catch the error before pressing return. Type

dirivel
and DO NOT press return. Instead, type control-x (that's typing the x key while holding
EXAMPLE 5-3

When given a command verb for which it can find no matching command file, the CCP
responds with the verb and a question mark.

Ardoor
DOOR?
A>_

63

64

Common Commands

down the control key, remember?). The command disappears from the screen! Control-x
is a start-over signal to the CCP. When CCP gets the control-x it erases everything typed
so far and both you and the CCP start over. Use control-x anytime you’ve fouled up a
command line and want to start over.

CorgrecCTING WITH CoNTROL-U. Try that again. Type
dirigible

and DO NOT press return. Instead type control-u. That has the same effect as control-x,
except that the old command line, the one you're giving up on, remains on the screen so
that you can refer to it if you want to. The result will resemble Example 5-4.

CORRECTING WITH BACKSPACE. Once more let’s pretend that you are having trouble
typing dir. Type

direemee

and DO NOT press return. Instead, use the backspace key. (If your terminal lacks a
backspace key, then use control-h for now; later, file a strong protest with the person
who bought a terminal without a backspace.) You’ll notice that each time you press
backspace (or control-h), the rightmost letter vanishes and the cursor backs up. Back-
space is invaluable; whenever you feel yourself making a typo just back up and type
again.

Uppercase and Lowercase

You may type CP/M commands in uppercase, lowercase, or a mixture of the two, as you
please. The CCP will convert everything you type in the command line to uppercase.
When you typed “door” the error message that came back was DOOR? because the CCP
had turned it into uppercase.

Since the CCP doesn’t care, you might like to enter all commands in lowercase.
That’s how we’ll show them in examples. Your command lines will stand out from the
system’s uppercase responses.

Not all programs are as forgiving as the CCP, although all of them ought to be. All

EXAMPLE 5-4
Result of using control-u to cancel a command line. The line remains on the screen for
reference, but user and CPP start over.

A>dirigible# ’
darn it#
dir_

Introducing the File System

CP/M system programs accept lowercase and treat it as uppercase (except for ED; see
Chapter 7), but some application programs may not. If you are running an application
program and get unexpected results, try giving it input in uppercase.

INTRODUCING THE FILE SYSTEM

Everything that CP/M does revolves around files and the file system. Most commands
work on files and the majority of command operands are names of files.

Filerefs: Naming Files

Because files are so important, it isn’t surprising that CP/M has a carefully defined
system for naming files. The names of files must be typed according to a set of rules. You
may write a file’s name on paper, or carry it in your mind, in any form you like. To name
a file in a command you must use the CP/M format. When we want to talk about the full
name of a file in the CPM format we’ll use the term fileref.

A fileref has three parts: a drivecode, a filename, and a filetype (Figure 5-2).

THE Drivecope. The drivecode is a single letter between A and P inclusive, followed
by a colon. CP/M provides for up to 16 disk drives, and names them A: through P:. The
drivecode specifies the disk drive on which the file is currently to be found. When a
command calls for a file as input, and that file’s drivecode says the file is on B:, then it is
on the B-drive that CP/M will look for the file. The directory of the diskette in the
B-drive will be searched for the file, and the file’s contents will be read from the B-drive.

THe DEFAULT DRIVECODE. The drivecode may be omitted from a fileref; when it is,
the CCP supplies one. The drivecode that will be supplied is the letter that appears in the
CCP’s prompt. Immediately after a cold start the prompt is A> and the default drivecode
is A:. A: will be put at the head of any fileref where you don’t put a drivecode yourself.

Filename
e @
Drivecode —selects Filetype—indicates
disk to be searched contents of file

Filename, filetype may use any letters except
e) e

The dollar sign ($) should be avoided as an initial letter.
FIGURE 5-2

"~ The parts of a fileref: optional drivecode, filename, optional filetype.

65

66

Common Commands

Tue FILENAME. The second part of a fileref is the actual name of the file. The filename
is a group of from one to eight characters. Most files are given names that are spellable,
pronounceable words, such as MYFILE, PAYROLL, or FRED. You are not required to
be so prosaic, if you don’t want to be. Any printable characters except those shown in
Figure 5-2 may be used in a fileref. This lets you give files names like BY+BY,
YES&NO, or %OFGROSS. Used carefully, this can be an aid to the memory.

Tue FiLeryPE. The third part of a fileref is a filetype of one to three characters. This is
a short secondary name separated from the filename by a period. The filetype may be
anything you choose. It may even be three spaces, that is, omitted entirely. Its letters
may be any you wish, except for those listed in Figure 5-2. Certain filetypes are given by
convention to certain kinds of files. This convention lets you separate files by the type of
their contents.

Table 5-1 shows the filetypes in common use. The only one you should note now is
the .COM filetype. This is the conventional filetype for files that contain machine-
language programs. .COM stands for command. A .COM file contains a command
program, that is, a machine-language program ready to be loaded as a command by the
CCP.

When the CCP receives a command, it takes the verb and appends .COM to it. Then

TABLE 5-1
The more important conventional filetypes. Any application package will have its own
conventions.

K

Filetype Conventional Use

.ASC Source text of a BASIC program

.ASM Source text of an assembly language program

.BAK Original version of an edited file

.BAS Source text of a BASIC program

.COB Source text of a COBOL program

.COM Machine language COMmand, ready to execute

.FOR Source text of a FORTRAN program

HEX Machine-language program in symbolic (hexadecimal characters) form
ANT Intermediate code produced by CBASIC compiler

.LIB Collection of source code for inclusion with the MACLIB directive of

MAC: collection of relocatable subroutines for linking with LIB.

LST File intended for printing

.PAS Source text of a Pascal program

.PLI Source text of a PL/I program

.PRN File intended for printing

.REL Machine-language program in relocatable form

.SUB File of commands intended as input to SUBMIT

.SYM Symbol information written by MAC assembler

553 Temporary file, used by PIP and most editors as the type of the work file

o

Introducing the File System

it searches the diskette directory for a file named verb.COM, whatever the verb may be.
That is the program that the CCP loads and calls, the program that by its logic defines the
meaning and effect of the command.

Introducing DIR

The DIR command lists the names of files in a diskette directory. The form of the
command is

DIR fileref

If the fileref is omitted, DIR lists all files. Example 5-2 shows a sample of its output. Run
it again now:

dir

DIR lists as many as four files on each line it writes. At the left of the line is the
drivecode, then comes a filename and a filetype for one file. A colon follows as a
divider, then the name and type of the second file, and so on. Compare the response you
got with that in Example 5-2. You probably have some of the same files, and some
different ones.

DIR will accept an operand consisting of a fileref. Try this:

dir a:beesabig.bug

The response is probably NO FILE, meaning that the command could find no file with
that fileref. Use this form of DIR to find out if a particular file is available without having
to scan the whole list.

Ambiguous and Explicit Filerefs

A word that is ambiguous is one that can mean more than one thing. An ambiguous
fileref is a fileref that can apply to more than one file. Ambiguous filerefs are very useful,
as they provide a way of recalling groups of related files. Some commands allow
ambiguous filerefs, whereas others will only work with explicit filerefs, those that apply
to only a single file.

THE * REFERENCE. You may substitute an asterisk (*) for either the filename or the
filetype (but not for the drivecode) in a fileref. The asterisk means “any.” The fileref
.COM means “any file whose type is .COM.” The fileref BEESABIG. means “any
file whose name is BEESABIG.” The asterisk may be used following other letters. For
example, the fileref BEES+.x means “all files whose names begin with BEES.... with
any type.” Any file whose filename began with BEES would match that reference.

67

68

Common Commands

Tue ? REFERENCE. The question mark (?) can be used in a fileref. When it is used, it
means “any single character.” The question mark allows you to refer to any group of
filerefs that are the same except for one or a few characters. The reference BEE?ABIG.*
would match files with names of BEEDABIG, BEEZABIG, BEERABIG, and so forth.

More than one question mark can be used. The fileref ???????7?.* is the same as
+ +: either reference would match files with any name and type. The reference ??7?7.%,
however, refers only to files whose names are one, two, three, or four characters long.
Longer names wouldn’t match.

DIR with Ambiguous Filerefs

The full power of the DIR command becomes clear when you understand the use of
ambiguous filerefs. Try

dir ~.com
to list all the commands on your diskette. Then try

dir
dir ».»
to verify that *.* refers to any name and type.

Exercise the DIR command as much as you can using the files on your diskette.
Look at Table 5-2 for ideas.

Using Drivecodes

The CCP prompts you with the name of a drive, and that drivecode is the default; it will
be used whenever you omit a drivecode. So far you've only used the A-drive and have
had no need of a drivecode. Now get your second diskette and put it into the B-drive.
Then do

dir b:

and DIR will list all the files on that diskette (you could have used dir b:*.*, but DIR
assumes “all files” in either case). Compare the result of

dir b:*.com
with the result of

dir a:*.com

Introducing the File System

TABLE 5-2
Some of the many uses of ambiguous filerefs.

Fileref Will Match
All files
o el Any file with name commencing with a Q, from Q alone through

QUIETLY.BAS to QZZ22222.72Z
wa*.com Any file of type .COM commencing with WA, such as WASH.COM,
WANT.COM, or WAVERLEY.COM

wilt.p* Any file named WILT with a type beginning P, such as WILT.PLI,
WILT.PRN, WILT.PRL, etc.

g. All files—characters after an asterisk are ignored, so this is equivalent to

wan? Files with a filetype of three spaces and names of four letters beginning
with WAN—WANT, WAND, etc.

w?n?.” Any file with first letter W, third letter N, total of four letters, any

filetype. WANT, WINS.SUB, WONT.GO, but not WINCE.BAS—
five-letter names won’t match

??7??7?y.* Eight-letter names ending in Y, any filetype—SUDDENLY.BOO,
WAVERLEY.COM

?7?7?2772.2? File names not exceeding seven letters; types not exceeding two letters.

Drivecopes witH VERBS. Think about this problem: When you give a command the
CCP searches for a file named verb.COM (commands are programs are files!). On what
drive does the CCP search? It searches the default drive, the one named in the prompt. In
fact, since a command verb is just a filename, the CCP supplies a default drivecode for
verb.COM exactly as it does for any fileref. If the CCP’s prompt is A>, then when it
needs to load a command the CCP will search for A:verb.COM.

Given that idea—that the CCP supplies a drivecode for the verb just as it does for
any other file—think about this: If there were a program named FRED that you wanted
to use as a command, and it was on the B-drive, how would you call it? One answer is to
move the diskette to the A-drive. A much better answer is to use a drivecode on the
command verb, as in b:fred operands. That would cause the CCP to search for
B:FRED.COM, which is exactly what is wanted.

With drivecodes you can call a command from the B-disk, giving it as operands a
fileref on the A-disk and another on the C-disk, as

b:fred a:beesabig.bug c:again.sam.
INvALID DRIVECODES. If you specify the drivecode of a drive that doesn’t exist in your
system, CP/M will report an error. Try it now; it won’t hurt anything. Find a drive code

letter that your system doesn’t have (P: is a good bet) and use it:

p:fred are you there?

69

70

Common Commands

The response should resemble Example 5-5. The Monitor tried to select drive P:inorder
to search its directory for P:FRED.COM. Since there was no drive P: available, an error
occurred: the Bdos Err on P: Select message is its way of telling you.

It waits for any input and then performs a warm start. Press the return key. The same
message appears again! The CCP is bent on moving to drive P: come hell or high water.
Use reset for a cold start; that'll fix things up.

The Drivecode Command

Usually the programs and files that you use during a work session are all together on one
diskette. It’s handy to make that diskette the default drive. Butitisn’t always convenient
to put that diskette in the A-drive.

The solution is to make some other drive be the default. This is done by giving CCP
a command that consists only of a drivecode. Try it now:

b:

Yes, the command is just the drivecode b: all alone. The next prompt should be B>
indicating that the default drivecode is now B:. Try it a few times and verify that the
current default drive, named in the prompt, is really supplied on filerefs:

dir a:
a:
dir
dir b:
b:
dir

When you do a cold start with reset the default drive is set to A:. When you do a
warm start with control-c¢, the default drive remains as it was last set.

SELECTING AN EMPTY DRIVE. If you ask the Monitor to use a drive that is currently
empty—by giving a b: drivecode command before you put a diskette in the B-drive, for
example, you will probably receive a different error message. Most systems will
continue normally if you then insert the diskette and return. If that doesn’t wake the
system up, do a cold start with reset.

EXAMPLE 5-5
The result of selecting a nonexistent disk drive. Responding with return repeats the problem;
a cold start clears it.

A>p:
Bdos Err On P: Select
Bdos Err On P: Select

64K CP/M vers 2.2
A>

Introducing the File System
The STAT Command for File Information

DIR only lists the names of files. STAT gives more information about them. STAT has
other functions as well, but for file information the form of the command is

STAT fileref
Try it now:
stat *.com

(If you get a response of STAT?, use DIR to find STAT.COM, and use a drivecode
command to switch to the disk where it is. If you can’t find it, get a diskette that has a
copy, load it into the A-drive, and do a control-c warm start.)

THe STAT FiLe ReporT. STAT produces output like that in Example 5-6. It tells you
five things about each file that matches the fileref. On the right it gives the explicit
fileref, drivecode and all. To the left of that it indicates whether the file may be changed
("R/W” for read-write) or is protected against changes (“R/O” for read-only). In the
center under the heading “bytes” it tells the size of the file as a number of kilobytes. The
remaining two columns relate to the way that CP/M allocates disk space; this is explored
in Chapter 9.

Note that STAT lists the files in alphabetical order. It is the only CP/M command to
do so. We'll see later how to use STAT as a convenient way to make a printed record of
the contents of a diskette.

STAT FOR AVAILABLE SPACE. STAT can also be used with only a drivecode. In that
event it reports on the status of the entire diskette. Try it:

stat a:
stat b:

EXAMPLE 5-6
The result of stat *.com on a typical diskette.

A>stat *,com

Recs Bytes Ext Acc

38 6k 1L R/W A:DDT.COM
5 2k L R/W A:DUMP.COM
52 8k L R/W A:ED.COM
98 L4k L R/W A:EDIT.COM
L4 2k 1L R/W A:LOAD.COM
92 12k 1 R/W A:MAC.COM
190 24k 2 R/W A:MBASIC.COM
58 8k L R/W A:PIP.COM
142 18k 2 R/W A:PRINT.COM
41 6k 1 R/W A:STAT.COM
10 2k L R/W A:SUBMIT.COM
6 2k L R/W A:XSUB.COM
Bytes Remaining on A: 312k

A>

71

72

Common Commands

The result should resemble Example 5-7. You are told how many bytes are available for
new or expanded files. (If you are using MP/M 2, try the command show space for a
similar result.)

STAT ror Disk Status. STAT with no operand reports on all disks that have been
used since CP/M was last initialized. Try that:

stat

This report not only tells you the remaining space but also gives the access state of the
disks, that is, whether they can be modified (R/W) or only used for input (R/O). At
present your disks should be R/W.

The REN Command to Rename Files

The REN (rename) command changes the name of a file without changing anything else
about it. Before trying it out, though, let’s create a file that you won’t mind losing. We'll
make a copy of an existing file, giving it another name. STAT.COM is a small file, so
let’s copy it. Do this:

pip 2bits.com=stat.com

The PIP command is described at length in Chapter 6. It makes copies of files. In this
case it should have made a copy of STAT.COM and given the copy the name
2BITS.COM. Did it?

dir stat.»
dir 2bits.*
stat stat.*
stat 2bits.*

EXAMPLE 5-7
The result of STAT for diskette information with typical diskettes.

A»stat a:

Bytes Remaining On A: 480k
A>stat b:

Bytes Remaining on B: 142k
A>stat

n: R/W, Space: 4B0k

B: R/W, Space: l42k

Az

Introducing the File System
Form oF THE REN Commanp. The REN command has the form:
REN newfileref=oldfileref

Itlocates the directory entry for oldfileref and alters it so that the same directory entry is
now found under the name newfileref. The contents of a directory entry describe the
location of that file’s data on the diskette. Since REN doesn’t change them, the contents
of the file remain the same. Only its name changes, Try it:

dir 2bits.*
ren 4bits.com=2bits.com
dir 2bits.*
dir 4bits.*

The file that was named 2BITS.COM is now named 4BITS.COM. No other change has
taken place.

REN Errors. REN will refuse to work if there is already a file with a name identical
to the new fileref. Try it and see:

ren stat.com=4bits.com

There is already a file STAT.COM, so that can’t become the name of another file.
REN also refuses to work if the old fileref doesn’t exist. Prove it:

ren anewref=notthere

There is no file NOTTHERE so REN can’t rename it.

Use REN to change 4BITS.COM to SIXBITS.COM, and finally to
ADOLLAR.COM (that’s inflation!).
The ERA Command to Erase Files
The ERA command removes a file’s entry from the dire ctory. It makes the diskette space
that was occupied by that file available for use. These actions of ERA can’t be revoked!
Once erased, the file is gone for good (here’s a mnemonic: an ER Ased file is ER Atriev-
able).
Form oF THE ERA CoMmanD. The form of the ERA command is

ERA fileref

where fileref may be ambiguous. Let’s erase the file ADOLLAR.COM that we built with
REN. Before doing so, check its size and the space on the diskette:

stat adollar.com

73

74

Common Commands

Then erase ADOLLAR and check the results:

era adollar.com
stat adollar.*

Your results should resemble Example 5-8. ADOLLAR.COM is gone, and the space
that it occupied has been added to the pool of space on the disk.

ERA ror MuLtipLE FiLes. ERA has the ability to erase several files at once. If the
fileref given ERA is ambiguous, it will erase all files whose names match the fileref.
This is a useful, but potentially dangerous, feature. The best way to tame it is to
remember that ERA will erase exactly the files that STAT displays when given the same
operand. If STAT with some fileref displays exactly and only the names of files you
want to erase, then ERA with the same fileref will erase just those files. We will make
use of ERA with an ambiguous fileref later.

Protecting Disks

STAT ror Disk ProTECTION. STAT can be used to protect a diskette temporarily
against accidental change. To protect a diskette use the form

STAT drivecode=R/O
where the drivecode names one of your disk drives, such as A:. Try it now:

stat a:=r/o
stat

EXAMPLE 5-8
When a file is erased, the space it occupied is made available; this shows as an increase in the
space reported by STAT.

A»stat adollar.*

Recs Bytes Ext Acc
4L 6k 1 R/W A:ADOLLAR.COM
Bytes Remaining on A: 202k

Arera adollar.com
A>»>stat adollar.com

File Not Found
A>»stat
h: R/W, Spaces: 208k

Ar_

Introducing the File System

The display from STAT shows that the A drive has been marked read-only. Any attempt
to modify that diskette will produce an error message. This protection is temporary. It
lasts only until the next warm start. See for yourself:

°C
stat

The A-drive is no longer read-only. Protect it again, and try to modify the diskette:

stat a:=r/o0
ren noway.com=stat.com

That should produce BDOS Err on A: R/O. No prompt appears. What now? Just press
return. The system will do a warm start, just as if you’d done control-c. Check with DIR;
the rename was not done. (In MP/M 2 you may use either STAT or SET; seta:=r/0 and
stat a:=r/o have the same effect.)

CHANGED DIskeTTES ARE R/O. If CP/M discovers that you’ve changed diskettes, it
makes the changed diskette read-only. The Monitor takes this precaution because in
some cases, if you changed diskettes while a program was running, the program might
write in the wrong area of the new diskette. To see it happen you have to change
diskettes. First check the status of the A-drive:

stat a:

Then remove the diskettes from both drives. Put the diskette that was in B: into the
A-drive. Make the Monitor look at it, then check its status:

dir a:
stat a:

It should now be read-only. Put the diskettes back as they were and do a warm start with
control-c.

R/O Pro1ECTION Is TEMPORARY. Disk protection is only temporary. It is done by
setting a flag in one of the Monitor’s variables. That flag is cleared on a warm start. Most
application programs cause a warm start when they end. Therefore, making a diskette
read-only usually protects the diskette only for a single command. Still, it is worthwile to
protect diskettes while testing a new or unknown program. Permanent protection comes
from the write-protect notch in the diskette jacket. Exposing the notch in the jacket of an
__ d&-inch diskette, or covering the notch of a 5-inch diskette, makes it impossible to write
" on the diskette regardless of its status.

75

76

Common Commands

STAT to Change File Status

The STAT command can alter two attributes that are contained in a file’s directory entry.
The first is the protection attribute, which prevents or allows alteration of the file. The
second is the directory display attribute. This controls whether the file will be visible to
DIR. The form of the STAT command that sets these attributes is

STAT fileref $attribute

FiLE PROTECTION. You can give individual files permanent read-only status. The
status is recorded in the directory entry for the file. Since the status is recorded on disk
with the file, it remains until you change it. In order to see it work, make a file and check
its status:

pip protect.com=stat.com
stat protect.com

Then make the file read-only and verify its new status:

stat protect.com $r/o
stat protect.com

The response indicates that the file has been protected. Now try to erase or rename the
file. The result is an error message BDOS Err on A: File R/O, followed by a warm start
when you press return. Any program that tried to erase, rename, or write into this file
would be terminated with the same message.

Read-only access can be applied to several files at once by giving STAT an
ambiguous fileref. Set all the .COM files read-only:

stat *.com $r/o
STAT reports on each file as it marks the directory. This is auseful function. As you plan
your diskette library (Chapter 8), think about what files ought to be read-only.
STAT will return any file to read-write access in a similar way. Enter
stat ».com $r/w

and watch the resulting output.

DirecTORY STATUS. You can hide the names of files so that they don’t appear in the
output of DIR. This attribute is also set by STAT. Try it:

dir protect.com

stat protect.com $sys
dir protect.com

stat protect.com

i

Introducing the File System

DIR no longer lists the file, even though the file still exists. Note that DIR does not say
NO FILE; it just doesn 't list the entry. As you can see, when STAT described the file, it
showed the name in parentheses to indicate that it had the SYS attribute. The SYS
attribute can be removed, restoring the file to visibility, in this way:

stat protect.com $dir
dir protect.com
stat protect.com

This hiding of files has only one real use. By hiding the names of certain common
files that are present on almost all diskettes, you simplify the display written by DIR. If
there are many files on a diskette, it is easier to locate the ones of interest if the standard
files don’t appear.

Summary of STAT

All the variations of STAT appear in the Reference section of this book. Here is a
summary of the ones we've looked at so far:

STAT — disk status

STAT drivecode R/IO — protect a disk

STAT drivecode R/W — make a disk alterable
STAT fileref $R/O — make file read-only
STAT fileref SR/'W — make file alterable
STAT fileref $SYS — hide file

STAT fileref $DIR — reveal file

In MP/M 2 these functions are available in the SET and SHOW commands as well.
If you have MP/M 2 you may prefer those commands to STAT simply because they have
fewer forms.

DISPLAYING FILES

In this section you’ll be displaying a file in several ways. You’ll need a printable file in
order to do so. We used a file named TEST.FIL in the examples; its contents are shown
in Example 5-9. You could have someone use an editor to make you a file like that.
Alternatively, you may use your knowledge of STAT and DIR to locate a small printable
file on your practice diskette. Almost any file with a filetype other than .COM or .INT is
printable. You want one that is no more than 4K bytes in length. Make a copy of this file
under the name TEST.FIL:

pip test.fil=whatever-its-name-is

filling in the name of the file you found.

77

78

Common Commands

EXAMPLE 5-9
A simple test file suitable as a source for experimenting with PIP.

This is TEST.FIL line...0l
This is TEST.FIL line...02
This is TEST.FIL line...03
This is TEST.FIL line...04
This is TEST.FIL line...05
This is TEST.FIL line...06
This is TEST.FIL line...07
This is TEST.FIL line...08
This is TEST.FIL line...09
This is TEST.FIL line...l0
This is TEST.FIL line...ll
This is TEST.FIL line...l2
This is TEST.FIL line...l3
This is TEST.FIL line...l4
This is TEST.FIL line...l5
This is TEST.FIL line...l6
This is TEST.FIL line...l7
This is TEST.FIL line...l8
This is TEST.FIL line...l9
This is TEST.FIL line...20
This is TEST.FIL line...2l
This is TEST.FIL line...22
This is TEST.FIL line...23
This is TEST.FIL line...24
This is TEST.FIL line...25

The TYPE Command
This is the simplest utility and the one most often used. Its form is

TYPE fileref
where fileref must be explicit. TYPE gives you a quick look at the named file by typing it
at the terminal. It's a very quick look indeed, if your terminal operates at 9600 bps or
more; the data stream up the face of the tube faster than the eye can follow. Try it
anyway, using your test file:

type test.fil
The contents of the file should flow past. If the file has no more than 22 lines, it will all fit
on the screen; if it doesn’t, some lines will have scrolled off the top of the screen.
Stopping Output with Control-s
CP/M provides a useful service through the control-s signal. When that character is

received, output to the terminal halts and doesn’t resume until a key (any key, including
control-s) is pressed. This lets you halt the flow of output in order to read it. When

you've seen enough, tap any key and let the data roll until you want to stop the flow ._

again.

S

Introducing the File System

Enter the type test.fil command again, but don’t press return yet. Rest your left
pinky on the control-shift key. Rest your left forefinger lightly on the “s” key. Just a
small dip of your hand will type control-s. Ready? Press return. See if you can halt the
display of TEST.FIL before the first line scrolls out of sight. Give another tap of the “s”
key to let output continue.

Control-s can be used to control screen output of most commands. You'll often find
yourself controlling output this way, so practice using it a few times. Be sure that you do
finally complete the display each time. You can tell it’s done when the CCP prompt
comes out. Control-s will halt most CP/M output. Try it with the output of STAT *.*.

If you're displaying a very long file and don’t want to wait for it to end, type some
character other than control-s; the TYPE command will stop instantly.

Console Copy with Control-p

When CP/M receives a control-p signal it begins to echo everything typed at the terminal
to the printer. This is called console copy and is very handy for getting quick paper copies
of files.

Try control-p now. First make sure that your printer is turned on and has paper in it.
Then enter a control-p and press return several times. The CCP’s prompts of A> should
appear at both the terminal and the printer. If nothing happens at either device, then the
printer isn’t ready or isn’t connected to the processor. Use reset to get going again and
find out what’s wrong. If the output appears at the terminal but not at the printer, or if the
system still hangs after you’ve checked the printer over, then you probably have to make
an I/O assignment. Read about assignments in the section on “Other I/O Devices” in the
next chapter, and check with your vendor.

When console copy is on, the printer duplicates everything that appears on the
screen. You turn console copy off with another control-p. Try it:

P

return (no printer output)
return

P

return (printer displays prompt)
return

You can hear the printer working as it duplicates the prompt.
Set console copy on if it isn’t (you can tell by listening to the printer as you press
return), then enter the command

type test.fil

which should display on both the screen and the printer.

79

80

Common Commands

ControL-s WiTH CoNTROL-P. Try it again, and stop the display with control-s. The
printer will stop too, and resume again when the display does. The screen display stops
the instant you press control-s, but the printer may not. Most printers have a buffer that
holds characters until they can be printed. When you press control-s, the processor stops
sending data to the printer, but the printer has a backlog of characters already received
and not yet written. It doesn’t stop printing until it has drained its buffer. At that point the
last character printed ought to be the same as the last character typed on the screen.

Evipence oF HANDSHAKING. You may have noticed another effect of the interaction
between processor and printer. The display, instead of flowing smoothly up the screen,
may move, pause, and move again. This is visible evidence of the interaction (called
handshaking) between processor and printer. When the printer’s buffer is nearly full, it
signals the processor. The processor waits for a second signal from the printer, indicat-
ing that it has nearly caught up, before sending more data. This explains the pauses that
oceur at the screen while the printer runs full-tilt: the processor is waiting for the printer
to catch up.

Avom PrINTING “type...". You can avoid having the TYPE command appear at the
top of your paper copy. Turn off console copy, then position your printer at the top of the
form. Enter the full TYPE command, but before you press return, type a control-p. Then
only file data will appear on the printer, except for the CCP prompt that follows the last
line. Try it. First make sure console copy is off, then:

type test.fil"P return

PrINTING THE FILE List. Control-p allows you to duplicate any terminal output on the
printer. You'll think of many uses for it. Here is one that was promised earlier. Set the
printer at the top of the form and then:

P

: the files on my practice diskette as of (date)
stat *.»

P

You’ve printed a detailed, alphabetical listing of the files on the A-drive diskette, headed
by a comment line giving the date. Such a listing should be filed with any important
diskette.

Chapter 6

PIP and 1/O
Devices

FORMS OF THE PIP COMMAND

PIP FOR DISK FILES
Copying Single Files
Copying Groups of Files
PIP Options for Disk Files

OTHER 1/O DEVICES
The Logical Devices
The Physical Devices
STAT for 1/0 Device Information
Making an Assignment Chart
STAT for Device Assignment
Logical and Physical Devices in MP/M

PIP FOR LOGICAL DEVICES
PIP Options for Formatting
PIP Options for Serial Transfer
PIP Summary

82

82
82
84
85

86
86
87
89
89
90
92

92
94
96
98

81

82

PIP and IO Devices

In this chapter we'll learn the use of PIP, the most important utility command. The
command’s whole purpose is to move data from one “peripheral” (I/O device) to
another. PIP’s most frequent use is in moving files from one disk to another; this is what
we'll look at first.

PIP can move data from and to devices other than disks. After discussing the way
that CP/M names and controls those other devices, we'll practice using PIP to move data
between the terminal, printer, and disk drives.

FORMS OF THE PIP COMMAND

The PIP command has two forms. The first is used when you want to call PIP to do a
single transfer, then go on to other things:

PIP destination=source [options]

The format of destination, source, and |options] will be explained shortly. Use the
second form when you want to make several transfers before leaving PIP. Call it by
name with no operands and after it has been loaded it will prompt you with an asterisk.
Then you may enter a transfer request in the form destination=source [options]. When
that transfer is complete, PIP again prompts with an asterisk; you may continue in this
way for as many transfers as you like. Enter return alone to end the command.

PIP FOR DISK FILES

The destination and source of a PIP transfer may be files. In that case the destination and
source fields are simply filerefs.

Copying Single Files

CopPYING ON A SINGLE Drive. PIP will transfer files within a single diskette or
between drives. We’ve used the simplest form of the transfer already. Let’s do it again to
duplicate our test file:

pip test2.fil=test.fil

This creates a new copy of the source TEST.FIL and names it TEST2.FIL. No options
were used. The source in this transfer was TEST.FIL; the destination was TEST2.FIL.

CoryiNG BETWEEN Drives. Now make another copy, on the other disk drive. If your
A-drive is now active (the CCP prompt is A>), fine. If not, reverse the places of b: and

a: in this command:

pip b:test.fil=a:test fil

PIP for Disk Files

Now there’s a file named TEST.FIL on both drives. Did you notice the sound, and
possibly the blinking lights, as the processor selected first one drive and then the other?
It’s hard to miss, unless you're working from a hard-disk drive. If you aren’t now
working on the A-drive, move to it with a drivecode command so that you’ll be in step
with the examples.

SEVERAL TRANSFERS IN ONE CoMManD. Use the second form of the command to
make several clones of TEST.FIL:

pip
t1.fil=test.fil
t2.fil=test.fil
t3.fil=test fil
return

Use DIR and STAT to see what you've done:

dir t=fil
stat t? fil

Notice the usefulness of the question-mark file reference. In this case it lets you pick up
only the files that were two characters long, omitting TEST.FIL and TEST2.FIL.

CoNCATENATING FILES. There may be several sources in a PIP transfer. The source
files are copied in order from left to right, and the destination contains all of their
contents. Let’s try that:

pip t9.fil=t1 fil t2 fil t3.fil
stat t?.fil

Don’t be surprised if the numbers in the STAT display don’t add up (as they don’t in
Example 6-1, for example). STAT reports sizes rounded up to a multiple of kilobytes.

EXAMPLE 6-1
There appear to be discrepancies in the size information when smaller files are merged into a
larger one. The explanation lies in the way CP/M allocates storage.

A>pip t9.fil=tl.fil,t2,fil,t3,fil
A>stat t?.fil

Recs Bytes Ext Acc

6 2k L R/W A:Tl.FIL
6 2K L R/W A:T2.FIL
6 2k L R/W A:T3.PIL
17 4k 1 R/W A:T9.FIL

Bytes Remaining on A: 184k

A>

83

84

PIP and 110 Devices

The discrepancy in the numbers in the “recs” column has another explanation; we'll look
at both of these effects in Chapter 10.

SHORTHAND NOTATION, When copying between disks, the source and destination
usually differ only in their drivecodes. Since there’s no need to type the same informa-
tion twice, you may omit one of the filerefs, leaving only the drivecode:

pip b:=a:t1.fil
pip b:t2.fil=a:

Of course you may omit the default drivecode if you wish. The CCP will supply the
default drivecode:

pip b:=t3.fil

Copying Groups of Files

PIP witn AmBicuous FiLErers. PIP will accept ambiguous filerefs, but only in
certain cases. Source and destination must have different drivecodes, and the complete
ambiguous fileref may appear only on one side of the equal sign. You now have four test
files with two-letter names. Here is how to move them all to the B-disk:

pip b:=a:t? il

When moving data from one disk to another it’s best to be quite specific about
drivecodes. It may not make any difference to the system, but you'll feel more
comfortable knowing you’ve said exactly what you meant.

PIP will accept any kind of ambiguous fileref, including *.* meaning “copy
everything.” When creating groups of related files, plan the names of the files for easy
grouping so that it will be easy to copy them, to erase them, and to display their names
and status.

StoppPING A Copy. PIP checks the terminal as it works. If you press any key, PIP will
notice it, report ABORTED, and stop work. Try it now. Enter the command below.
When the first transfer is under way, press any key (“X” for instance):

pip b:=a:test fil

After reporting that its work was “aborted” PIP ended, returning control to the CCP.
Had you been using the second form of the command, like this:

pip
b:=a:testxfil

it would have issued its * prompt and awaited another input.

PIP for Disk Files

TeLLing WaicH FiLe Dion’t Copy. You'll have noticed that when PIP copies a
group of files, it reports the names of the files as it moves them. PIP displays a file's
name before it begins the transfer. If there is an error, or if PIP is stopped as we just saw
how to do, the last name typed tells the file being copied when the PIP stopped.

PIP Options for Disk Files

THE V OPTION. The V option stands for “verify™; it asks PIP to read the destination file
after it has been written and check it against the original. This check helps to ensure that
what was written can be read. A verified copy takes slightly longer than an unverified
one, as more disk operations must be done. The extra time is barely noticeable for short
files.

Try a verified copy:

pip t4.fil=t1.fil[v]

It is a good idea to verify every disk copy you do. We’ll use the V option in all our
examples from here on.

THe R OpTiON. You may recall the feature of STAT by which you could hide the
names of files. Hide one of the test files now:

dir t?.fil
stat t4.fil $sys
dir 2 fil

Now try to copy the hidden file:
pip t5.fil=t4 fil[v]

PIP responds that the file can’t be found.
The R option stands for “read hidden files.” When the R option is given, PIP will
find the files hidden by STAT:

pip 15.fil=t4.fil[rv]

The transfer completes; the file was found. Note than when more than one option is given
the options may appear in any sequence. Thus [rv] and [vr] are the same.

Tue W Oprion. The W option stands for “write over read-only files.” Normally,
when the destination is the name of a protected file, PIP will not complete the transfer
without explicit authorization. Try it:

stat 15.fil $r/o
stat t5.fil
pip t5.fil=t1.fil[v]

85

86

PIP and 1/O Devices

PIP asks for authorization. Tell it n for no; it will reassure you that the file was not
deleted.

Had you said y for yes, PIP would have overridden read-only protection and
completed the transfer. The W option tells PIP to proceed with the transfer regardless of
file protection:

pip t5.fil=t1 filjwv]
stat t5.fil

As the STAT display shows, the new file is not protected.

The W option is clearly dangerous for it makes the read-only file attribute useless. It
might be useful on some occasions but, since you can always override protection by
responding Yy to PIP’s request for authorization, the W option isn’t often needed.

Tue O Oprion. As we’ll see in Chapter 9, the end of a printable file is marked with a
special character (control-z). Nonprintable files are not so marked. Usually PIP can tell
the difference from the filetype of the file it is copying. If the filetype is one that is
conventionally printable, then PIP stops copying when it finds a control-z marker within
the file. Once in a long while you might have a file that, because of its filetype, PIP
would judge to be printable but which actually has control-z characters as part of its data.

The O option tells PIP to copy every byte of a file, regardless of the presence of
control-z characters.

Tue G Oprion. Yet another option, G, lets PIP copy files from one user code to
another. This option and the use of user codes are covered in Chapter 8.

OTHER 1I/O DEVICES

Disk files are central to CP/M, but other devices are important too. There is a profusion
of devices that could be connected to a CP/M system. In no way could the designers of
CP/M provide programming for all of them. Instead, they chose to provide support for a
small set of common device types. That left it up to the system’s vendors to complete the
/O system with their knowledge of what actually is connected to the machine. The
Monitor allows a program to access any four real devices by way of four prototype
device names. You choose which real device will play each prototype role before the
program is run.

It is necessary to understand the system of I/O assignments in order to make
complete use of PIP. However, if you are a computer novice, there is no harm in your
skipping the rest of this chapter and returning when you feel more at home with the
machine.

The Logical Devices

LocicaL DEvices. The Monitor allows a program to access just four devices over and
above disk files (a program can access any number of those). These four devices are

Other 1/O Devices

named CON:, RDR:, PUN:, and LST:—for console, reader, punch, and list respective-
ly.

I/O AssiGnmEenTs. These devices are called logical devices because they represent
classes of devices, not specific hardware. The Monitor will connect each logical device
to any of four real devices. These connections may be changed at your command; to do
so is to make an I/O assignment.

ADVANTAGES OF LogicaL Devices, This idea of logical devices provides two ben-
efits. First, it allows programs to be independent of the details of the system configura-
tion. Programs need not be aware of how the CON: device, say, produces data, or of
what machine address it has, or of what sequence of machine instructions is needed to
make it work. The program makes a service call on the Monitor requesting input from
CON:. The Monitor performs the necessary instructions to acquire a character from
whatever physical device is currently assigned to CON:. This makes programs indepen-
dent of the device logic and thus makes it easier to transport programs from one system to
another.

The second benefit is that you can change the connections between the logical
devices and the real ones. The assignment of LST: to a real device may be changed so
that at one time it means the printer and at another time the terminal. The commands that
write to the LST: device won’t be able to tell the difference.

MEeanING oF THE LoGicarL Device Names. Each of the logical devices has a conven-
tional use and is thought of in certain ways.

CON: is the logical terminal. Almost all CP/M programs assume that CON: has a
keyboard operated by human fingers, and they read their primary control input from
CON:. Programs assume CON: has a screen that the operator is watching; they write
their messages to CON..

LST: is the logical printer. Most programs write data they expect to print to the
LST: device.

RDR: is an unspecified serial input device. PUN: is an unspecified serial output
device. Programs that use RDR: and PUN: assume that they are like a paper-tape reader
and a paper-tape punch respectively. That is, RDR: is expected to read, and PUN: to
write, characters of the ASCII alphabet, one at a time. RDR: and PUN: are the best
devices to represent the many exotic I/O boards that will fit the S-100 bus, as sketched at
the end of Chapter 2.

The Physical Devices

There are 12 names for physical devices defined in CP/M. They are shown, together with
their conventional meanings, in Table 6-1. They are only names; CP/M doesn’t enforce
any particular relationship between these names and the real devices attached to your
system. That relationship is established by the vendor of the system. The vendor knows
what devices your system actually has, and will have modified the Monitor so that each
device in the system has a name.

The names TTY:, CRT:, and UC1: are meant to apply to terminal-like devices.

87

88

PIP and I/O Devices

TABLE 6-1
The conventional use of the physical-device names—the actual meaning of a name is set by
the vendor and is arbitrary.

Name Conventional Use

Devices that may be assigned to CON:

TTY: Typewriter terminal

CRT: Video display terminal

BAT: Signals that input requests be diverted to RDR: logical device, output to
LST: logical device

uC1: Another console (human-operated input and output) device

Devices that may be assigned to RDR:

TTY: Typewriter terminal

PTR: Paper-tape (or cassette-tape) input
UR1:

UR2: Other serial input devices

Devices that may be assigned to PUN:

TTY: Typewriter terminal

PTP: Paper-tape (or cassette-tape) output
UP1:

uP2: Other serial output devices

Devices that may be assigned to LST:

TTY: Typewriter terminal

CRT: Video display terminal

LPT: A printer

ULT1: Another printer or serial output

TTY: is a conventional name for a typewriter terminal, CRT: is that of a video terminal,
and UC1: is left open.

The name PTR: is meant to apply to a paper-tape reader or another serial character
input device such as a tape cassette. The names UR1: and UR2: are left open to be
applied to any other serial input device you might buy—a cassette drive, a telephone
coupler, or even a musical keyboard.

The name PTP: is meant for a paper-tape punch. Like PTR:, it might apply to any
serial character output device. If you have a cassette tape, both PTR: and PTP: might
apply to it, one for input purposes and one for output. UP1: and UP2: are undefined,
except as you and your vendor match them to serial machinery.

LPT: is the conventional name for the main printer in the system. UL1: is an open
name available for a second printer-like device.

BAT: is a special name. The designers’ intent was that if CON: were assigned to
BAT:, then all input requests for CON: would be diverted to RDR: and all output
requests diverted to LST:. That would make it possible to prepare a script of commands,
place that stream of data on the device assigned to RDR:, and leave the system to run by

Other I/0 Devices

itself. BAT: thus stands for batch operation. Implementation of this is left to the vendor;
the distributed code for CP/M doesn’t do anything about BAT:. Systems with a device
suitable for assignment to RDR: are in the minority. Hence most systems don’t support
BAT:, although it could provide a very useful service.

STAT for I/O Device Information

You control the mapping between logical devices and physical device names through the
STAT command. Go to the terminal and try two commands:

stat val:
stat dev:

The results should resemble Example 6-2. STAT VAL: is a convenience provided by
STAT. Itdisplays a list of reminders of how to use the STAT command. The bottom four
lines of the display list the possible assignments of physical-device names to logical
devices. For instance, the CON: device may be assigned to any of TTY:, CRT:, BAT:,
or UC1:.

The output of stat dev: is a list of the device assignments that are now in effect.
Since you haven’t altered them since the last cold start, the assignments that are
displayed are the default assignments that are true whenever you initialize the system.
This default can be changed. If you find that the default assignments aren’t convenient,
consult your vendor (or read Chapter 15).

Making an Assignment Chart

One difficulty of explaining device assignment is that we can’t know what devices your
system has or under what names your vendor defined them. It is important that you know
these things about your system.

EXAMPLE 6-2
The STAT VAL: command displays a list of reminders about how to use STAT. The STAT
DEV: command shows the current assignments of physical to logical devices.

Arstat wval:

Temp R/0 Disk: d:=R/0

Set Indicator: d:filename.typ $R/0 SR/W $SYS $DIR
Disk Status : DSK: d:DSK:

User Status : USR:

Iobyte Assign:

CON: = TTY: CRT: BAT: UCL:
RDR: = TTY: PTR: URL: UR2:
PUN: = TTY: PTP: UPl: UP2:
LET: = TTY: CRT: LPT: ULL:
Arstat dev:

CON: is CRT:
RDR: is TTY:
PUN: is TTY:
LST: is LPT:

A>_

89

90

PIP and 1/O Devices

Figure 6-1 is an I/O assignment chart filled out for a small CP/M system. The rows
of the chart describe the four logical devices. Each column represents one possible
assignment to a physical-device name. For instance, the upper left entry is for the
assignment of CON: to TTY:.

In each entry of the chart is written the effect of that assignment: the actual device
that will be accessed when that assignment is made. The example system has only two
devices, a terminal (tube) and a daisy-wheel printer (daisy). The CON: logical device
can be assigned to either one. According to the chart, assigning CON: to either TTY: or
CRT: will connect it to the video terminal; assigning it to either BAT: or UC1: will
connect it to the daisy printer and its keyboard. The BAT: device was not implemented in
this system as there was no real device for serial input.

According to the sample assignment chart, if PUN: and LST: are assigned to TTY:,
they are connected to “null.” This system was set up so that when those assignments
were made the output would simply be discarded. This is sometimes useful for testing
programs.

You should fill out a chart like this one for your system. Consult your vendor (or
read on through Chapter 15) to get the information. There is a blank assignment chart in
the Reference section of this book. Fill it in so that the information will be handy.

STAT for Device Assignment

Once you know the vendor-defined meanings of names such as TTY:, LPT:, and PTR:,
you can make I/O device assignments to suit yourself. Once more, check the current
assignments:

stat dev:

TN CRT: BAT: UETI :
CON: | Aode Soube Ao 8o
TTY: PTR: UI_{I: Nl UR2:
ror: | wled | b Jord S
TTY: PTP: UFP1: UP2:
TTY: CRT: LPT: ULIL:
L |l Aok Jory Jo
FIGURE 6-1

An I/O assignment chart filled in for a small system with only two devices: a terminal -

(“tube”) and a printer (““daisy”). There’s a blank chart in the Reference section; fill in your
I/O assignments.

Other 11O Devices

The name presently assigned to CON: is a name for your terminal. If your printer works
for console copy (described earlier), then the present assignment of LST: is a name for
the printer. Don’t be too surprised if both logical devices are assigned to the same name,
such as TTY:. One of the most slippery things about the device assignment scheme is that
the TTY: you assign to LST: may not mean the same device as the TTY: you assign to
CON:. The connections are strictly arbitrary; your only hope of avoiding confusion is to
complete the four-by-four grid of the assignment chart and then consult it often. With
your assignment chart filled out, find an assignment that will connect the LST: device to
the terminal. CRT: is a likely candidate. Then make that assignment with STAT:

stat Ist:=crt:
stat dev:

The display from stat dev: should show that the assignment has been made. Now all
output directed to the LST: device will appear at the terminal instead. Let’s find out.
When console copy is on, console output is duplicated on the LST: device. Try it:

type test.fil"Preturn

Example 6-3 shows what ought to happen. Every output character appears twice (once as
written to CON: and once as written to LST:, of course). Turn off this double vision with
another control-p and return LST: to its previous assignment. If that was LPT:, say, then
the command would be

stat Ist:=Ipt:

If you can’t remember what it was, do a cold start with reset to get the default settings
back.

Ponder your assignment chart. Try to think of ways of using these possible
connections. Try also to think of improvements you’d like made in the layout, and what
the chart should be like if you added another device to the system.

EXAMPLE 6-3
The result of console copy with the printer assigned to the console device—every output
character is duplicated.

A>stat lst:i=crt:

A>type test.fil (control-p pressed)

TThhiiss iiss TTEESSTT..FFIILLEE lliinnee...... 11
TThhiiss iiss TTEESSTT..FFIILLEE lliinnee...... 22
TThhiiss iiss TTEESSTT..FFIILLEE lliinnee...... 33
TThhiiss iiss TTEESSTT..FFIILLEE 1lliinnee...... 44
TThhiiss iiss TTEESSTT..FFIILLEE 1lliinnee...... 55

TThhiiss 1iiss (ete)

91

92

PIP and 1/0 Devices
Logical and Physical Devices in MP/M

In many respects MP/M and CP/M are alike as far as the ordinary user can tell. One
important difference between them lies in MP/M’s treatment of logical devices. The use
of CON: is almost the same, but that of the other devices differs.

LST:iwnMP/M. InCP/M the printer is all yours, to do with as you wish. Under MP/M
you share the printer with any other users who are working at the same time. If your
printed lines are not to be mixed up with somebody else’s, you have to get exclusive use
of it. PIP will do this for you when you specify LST: as the destination of a transfer.
Other programs may not seize the printer. There is a way you can do it for them. The
control-q signal requests ownership of the printer. If when you type control-q the printer
isn’t in use, MP/M will reserve it for you and the commands you run. Release the printer
later with another control-q.

RDR: anp PUN: ix MP/M. MP/M simply doesn’t support the RDR: and PUN:
devices. Miscellaneous serial devices are defined as “consoles” to MP/M, and there are a
variety of ways in which you can direct I/O to a different “console” than the terminal.
You'll find that a CP/M program attempting to use RDR: or PUN: under MP/M in fact
will be using the terminal. Such a program will have to be changed to work under MP/M.

PIP FOR LOGICAL DEVICES

PIP will accept the logical device names CON: and RDR: as sources in a transfer. It can
use any of the logical devices CON:, LST:, or PUN: as a destination. PIP uses the
Monitor for its transfers, so the data will flow between whatever real devices are
currently assigned to the logical names.

CON: As A SOURCE. As an example of using a logical device, let’s build a disk file
directly from the terminal. When typing data into a PIP transfer, you must remember to
end each line with both return and linefeed. In normal command entry the CCP takes care
of the linefeed for you, and you only use return.

PIP uses control-z to signal end of transfer. You'll have to enter control-z to stop
the operation. Try it. Type carefully!

pip my.fil=con:

As long as | type perfectly return linefeed
And never make a slip return linefeed

I'll never need an editor; return linefeed

| can enter files through PIP. return linefeed
"z

type my.fil

As you can see, the data from CON: (the terminal) were placed in the destination,
MY .FIL. While typing into PIP this way, you receive none of the typing aids you're used

PIP for Logical Devices

to. If you corrected a typing error by backspacing and typing over, all three characters
went into the file: the error, the backspace, and the overstrike. When you display the file
with TYPE, the same three characters are typed out, probably too fast for you to see
them come. The control-x and control-u error correction aids don’t work either.

CONCATENATING LoGicAL DEVICES. A logical device can appear in a list of concaten-
ated files as well. Try this one:

pip me2.fil=my.fil,con:,my.fil

linefeedyou can say that again!return linefeed
Z

type me2 fil

That transfer exposed a problem. How can you tell when PIP is ready to receive
data? It doesn’t issue a prompt to tell you when it’s ready for you to type. The only way
you can be sure is to wait for all disk activity to stop. When the select lights are out, or
when you hear the click of the head unloading, you know that PIP isn't reading disk data
and so it must be waiting for terminal input. If you have a hard disk, there isn’t any clear
indication. As long as the preceding sources are of reasonable size, waiting 15 seconds
or so should be enough to ensure that PIP is listening.

LST: as A DesTiNaTION. The logical printer, LST:, can be a PIP destination. Make
= your printer ready, then try

pip Ist:=con:

Until you enter a control-z, any character you type will be sent to the printer. Your
printer may not respond as the terminal does to backspace or tab characters. Try it and
see. On the other hand, control-1 (also called formfeed) should cause the printer to skipto
anew page. Control-l may mean nothing to the terminal, or it may cause the terminal to
clear its screen.

" Disk FiLes to LST:. The printer is more commonly used as a destination for disk
files. Here’s the simple form:

pip Ist:=my fil
but there’s nothing to stop you from sending several files:
pip Ist:=test.fil,my.fil, me2.fil

Notice that each file’s data follow on the heels of the prior file. In CP/M 2, one way to get
" each file started on a new page is

pip Ist:=test.fil,con:,my fil,con:,me2.fil

94

PIP and 1/0 Devices

Each time the printer stops, enter "L"Z. The printer will feed to a new page, and the next
disk file will begin.

PIP Options for Formatting

PIP provides numerous options that regulate the format of the transferred data. In the
following examples we’ll use the printer and terminal as destinations. This is done here
only for simplicity and visible results. All of the formatting options work as well with
disk, printer, or any other destination.

THE Dn OprioN. The Dn option (the letter d followed by a number) stands for “delete
trailing columns™; it causes PIP to truncate each line to the column indicated by the
number. Try it:

pip

con:=my.fil[d5]
con:=my.fil,myfil[d3]
return

Tue P Oprion. The P option stands for “pagination.” It causes PIP to insert a
formfeed after a certain number of lines of output. If no number of lines is specified, PIP
inserts a formfeed every 60 lines. This fits in with the normal use of 11-inch paper spaced
at six lines per inch, and results in half-inch margins at top and bottom.

pip Ist:=test fil[p5]

This begins the listing of the file on a new page, and skips to a new page every five lines
thereafter.

Be aware that when sending concatenated files the P option only inserts a formfeed
at the head of the first source file. Thus in

pip Ist:=test.fil[p],my.fil[p]

the display of MY.FIL begins immediately after the last line of TEST.FIL. This is true
even if the two P options specify different numbers of lines.

THE F Oprion. The F option is used to filter out formfeed characters that might
already be in a file. Certain applications create listing files (files of type .PRN or .LST)
that contain formfeed characters on the basis of some assumed page size. To print such
files on a different size of paper, use the F option to strip the formfeed characters out of
the file and the P option to put in new ones at the desired spacing.

Tue L anp U Oprions. The L and U options change the case of alphabetic characters.

The L option makes all alphabetic characters lowercase; the U option makes them all _

uppercase. Try it:

pip con:=my.fil,my.fillu],my fil[1]

PIP for Logical Devices

Tue N anp N2 Oprions. The N and N2 options cause PIP to add a sequence number
at the head of each line as it writes. The sequence numbers begin at one and go up by one
~ with each record. The field in which the numbers are placed is six characters wide.
The N option causes PIP to make sequence numbers in which the leading zeroes are
converted to blanks, and the number is followed by a colon and a space:

pip con:=my.fil[n]

The N2 option causes PIP to leave the leading zeroes in the sequence numbers and to
follow each with a tab character. With standard CP/M tab stop settings, this places the
first data character of the line in column 9, just where the N option put it:

pip con:=my.fil[n2]

Another example follows.

THe T Oprion. The T option requests PIP to expand tab characters that is, to replace
each tab character it finds in the source with some number of spaces. PIP keeps track of
the column at which the next destination character will fall. When it finds the next source
character to be a tab, PIP writes instead the number of space characters that would be
skipped by a tab at that position.

CP/M has a convention that tab stops are set at every eighth position on all output
devices (that is, at 9, 17, 25, etc.). Some printers and terminals support settable tab
stops; others provide permanent tab stops that may or may not be at every eighth
position. And some devices don’t support tabs at all.

The T option lets you smooth out these inconsistencies by converting tab characters
into spaces on the basis of any tab increment you like. We can test it with the N2 option,
which puts a tab after the sequence number:

pip
con:=my.fil[n2]
con:=my.fil[n2t]
con:=my.fil[n2t20]
return

The first file transfer shows where your terminal places the first tab stop after position
six. In the second the tab in each line was replaced by enough spaces to begin the data in
column 9, as the T option alone assumes tabs in 9, 17, etc. The third transfer replaces the
tab with enough spaces to begin the data in column 21.

Make your printer ready and repeat that series with a destination of LST:. If your
printer ignores tabs, or assumes tab stops at some increment other than eight, then the
first and second transfers will differ.

Tue PRN: Device. The P, F, N, and T options let you format data going to any
destination, including disk files. PIP supplies a special convenience when the destina-
tion is a printer. If you specify the destination as the device name PRN:, PIP writes to

~— the printer and assumes options P60, N, and T8:

pip Ist:=my.fil
pip prn:=my.fil

95

96

PIP and 11O Devices

TrE S ANp Q OpriONs. The S and Q options dictate the points at which PIP should
Start and Quit copying a source. They let you extract a portion of a source. The extracted
portion may be concatenated to other (portions of) files.

In demonstrating these options we will use MY.FIL, the four-line file you entered in
the section “CON: as a Source.” If you made typing errors in entering that file, or didn’t
enter it at all, make a good copy of it now.

Tue S OpTION.

The S option gives PIP a marker at which to begin extracting data from the source.
The marker is the string of characters between S and control-z. Here is an example:

pip

con:=my.fil

con:=my.fil[sAnd"Z]
The second transfer begins with the word “And” at the head of the second line (don’t
forget to capitalize “And” exactly as you entered it). PIP ignores all the data that precede
the start marker.

The S option is not limited to skipping whole lines:

con:=my.fil[stype Z]
causes “As long as I” to be skipped; the transfer commences with the start-string “type.”
THE Q Oprion. The Q option is used exactly like the S option:

con:=my fil[gfiles"Z]

The transfer begins with the first line and ends with the word “files.”
The two options may be combined:

con:=my.fil[sAnd"Zgslip"Z]

Only the second line is typed.
An extracted file can be concatenated to other data:

con:=my.fil[sI'll"Z],myfil[gslip"Z]
return

PIP Options for Serial Transfer

Dozens of kinds of devices can be connected to a CP/M system. Special-purpose devices
may have their own software to drive them, but if a device can reasonably be assigned e
RDR: or PUN:, PIP can transfer data through it. PIP provides several options that are
useful when it is driving serial devices, especially paper-tape and cassette-tape drives.

PIP for Logical Devices

(If your system lacks such devices, or if you are using MP/M, or if you are new to CP/M,
skip this section.)

Tue B Oprion. The B option is especially designed for use with paper-tape readers
and some cassette recorders. These devices operate at a fixed, and often quite rapid,
speed. The tape being read may contain long streams of data. When transferring data to
disk, PIP ordinarily reads a fixed amount of data and then writes a disk record. The tape
will continue to move while PIP is writing to disk. If PIP takes too long, incoming
characters will be lost.

The B option prevents such an overrun by causing PIP to buffer all incoming data in
working storage until the device signals end of data with an XOFF character. Only then
does PIP write the received data to the destination.

The maximum amount of data that PIP can handle depends on the amount of
working storage in your system. For a conservative estimate, subtract a 20K allowance
for PIP and the Monitor from the size of your system. A system with 64K of working
storage should be able to handle records more than 40 KB long.

Tue E Option. The E option instructs PIP to echo all transferred data to the console
device. This lets you monitor the progress of a transfer between tape and disk. If an error
occurs, the last data transferred can be seen on the screen. You can use some unique part
of the data as a start marker with the S option when recovering.

THE H AND | OpriONs. The H and | options are for use when transferring files in the
Intel “hex” format, a way of storing machine-language programs in printable form that
we'll discuss in Chapter 12, Hex format files are written by the CP/M Assembler; the
format is often used to transport programs on tape. The H option causes PIP to check the
transferred data for conformity to the format, and to strip out nonessential parts. The |
option implies the H option (so both need not be specified), and also strips out program
information records allowed by the format.

THE ZOp1iON. The Z option causes PIP to zero the parity bit of each byte of data as it
isreceived. Data received via the Monitor from the CON: logical device always have the
parity bit set to zero. This isn’t true of data from the RDR: device, and that is just as well
as some devices that might be assigned to RDR: transfer 8 meaningful bits in each byte.

The Zoption gives you control over the parity bit in serial transfers. If the incoming
data do not contain useful data in bit 7, specify Z. If all 8 bits are useful, omit Z.

The device assigned to PUN: may require that the parity bits of output data be set to
zero. In that case specify the Z option on the source of the transfer.

SpeciAL PIP Sources. PIP provides two special device names that may be used as
sources in a transfer. The NUL: source stands for 40 ASCII NUL characters. NUL: is
used to create a leader or trailer on a paper tape, thus:

pip pun:=nul:,my.fil,nul:

The EOF: source stands for a control-z character (the ASCII code SUB) which is the
CP/M end-of-file mark. PIP automatically sends a control-z at the end of any file

97

98

PIP and 1/0 Devices

transfer it knows to contain ASCII data, but in some circumstances you may want to send
one explicitly.

User-WRITTEN PIP Cope. The PIP program has been designed so that user-written
code may be inserted into it. Two user subroutines are allowed, one to be used as a source
and the other as a destination. They are designated as INP: and OUT: respectively. The
interface between the main PIP program and these user-supplied routines is described in
the CP/M documentation. They must be written in assembly language and patched into
PIP with the DDT command. We'll look at the use of DDT for patching in Chapter 12.

PIP Summary

This has been a long excursion around the features of PIP. Before going on to another
subject you might like to look at the pages on PIP in the Reference section. That will help
you to recover a view over the forest after this tour through the trees.

Before leaving this section we should clean up the files we created. That will give us
an opportunity to use ERA with ambiguous filerefs. On the A-disk you ought to have
several files of type .FIL: T1 through T5, T9, TEST, and TEST2. Some of the files
have been copied to the B-disk.

The key to safe use of ERA with an ambiguous fileref is this: The filenames listed
by STAT fileref are the files that will be erased by ERA with the same fileref. Ifa STAT
command shows you exactly the files you want erased and no others, then ERA with the
same operand will erase those files and no others. Use STAT and ERA in this way to
erase all the files created with PIP.

Chapter 7

Using ED

EDITOR CONCEPTS 100
The Edit Session 100
File Handling 100
Types of Editors 101
USING ED 102
An Initial Session 102
Controlling the Edit Session 103
The Form of ED Commands 105
Controlling Files and Working Storage 106
Displaying Text 107
Controlling Line and Character Pointers 109
Inserting and Deleting Text 111
Text Substitution 113
Searching for Text 114

Macro Commands 115

100

Using ED

Many CP/M users spend more of their terminal time using an editor than any other
program. Your editor is the program that lets you create, and then correct, files of all
kinds: letters, lists of data, programs, even books on CP/M. The human factors of your
editor can be crucial to your productivity.

There are a number of editor programs available for CP/M. Three very popular ones
are Electric Pencil, Magic Wand, and Word Star. If you have acquired one of these or
another editor, skip this chapter and learn your own editor. If you haven’t yet bought
another editor, stay with us to learn ED, but plan to investigate some of the others as they
are better for many purposes.

A note on the examples in this chapter: When dealing with the CCP it doesn’t matter
whether you type your commands in uppercase or lowercase. When dealing with ED it
matters very much. When doing the examples, type your commands exactly as shown.
We'll explain why as we go.

EDITOR CONCEPTS
The Edit Session

STARTING THE SESSION. All editors are based on similar concepts. An editor is called
as a command and given the name of a file. After it has been loaded by the CCP, the
editor loads part or all of the file into working storage; the edit session has begun. It waits
for you to type an editing command. The command directs the editor to make a change of
some kind in its copy of the file. After that change is made, the editor waits again. The
edit session continues in this way.

EnpinG THE SEssION. When you've caused all the changes you want, you give the
editor a command that means “OK, finished,” and it writes the altered file back to disk.
The altered copy has the name of the original file; the old version remains but now has a
filetype of .BAK (for backup).

File Handling

How THE FILE Is MoVED. During the edit session the editor holds a copy of the file, or
part of it, in working storage (Figure 7-1). Sometimes the file to be edited is larger than
the space available in working storage. A few editors cannot handle such files, but most
provide for this by loading a portion of the file at a time. Only the part of the file in
working storage is accessible for editing. When you've finished with the first part of the
file, it is written to disk as part of a work file. The next portion of the file is brought into
working storage to be edited. When you tell the editor that you’re done, any remaining
portions of the file are copied to the work file. The original file is then given a filetype of
.BAK, and the work file is given the name of the original file.

Editor Concepts

1 "
— E e
= Accessible 7
portion of
: file _——
Working storage

Original file—NAME.TYP Work file—-NAME.$58
(becomes NAME.BAK) (becomes NAME.TYP)

FIGURE 7-1

An editor copies all or part of the original file into working storage where it can be changed.
The modified data are written to a work file that eventually acquires the fileref of the
original.

Tue LINE Concepr. Most editors view the file as a continuous stream of characters,
divided into units called lines. By CP/M convention, the marker that ends one line and
begins the next is a pair of characters, return and linefeed.

LiNEs AND DispLAY LINES. A line of text in this sense is not the same as a line of letters
across your terminal’s screen. A text line may be as short as zero characters (no other
characters between one return-linefeed pair and the next), or it may be several thousand
characters long. When we want to refer to a line of letters on the screen, we’ll speak of a
“display line.” Otherwise, take “line” to mean “all the characters between one return-
linefeed marker and the next.”

CURRENT LINE AND CHARACTER. An editor can see only one line at a time and, within
that line, only one character at a time. Figure 7-2 shows the first four lines of a file as an
editor might see them. The editor is looking at the second line and within it at the initial
“h” of “had.” The line that the editor sees is called the current line; the character it sees is
the current character. Often the documentation of an editor will talk of the “‘current line
pointer” and the “‘character pointer”; these can be imagined as the little pointing hands
drawn in Figure 7-2.

Types of Editors

FuLL-ScreeN EpiTING. A full-screen editor displays a page of text on the screen of the
terminal, then indicates the current character by placing the cursor under it. A full-screen
editor allows you to move the cursor with various signals. As you move the cursor the

101

Using ED

The boy stood on the burning deck,
0"4)?

LINE Whence all but he{l}jad fled;
The flame that lit the battle’s wreck

Shone round him o'er the dead.

FIGURE 7-2

An editor looks at a single character within a single line. A full-screen editor marks the
current character with the terminal cursor; ED reveals the current line with the command
oTT.

editor updates its character pointer accordingly so that it is always looking at the same
character that you are. When you type a character it replaces the character at the cursor;
the relationship between your input and the rest of the file is always clear.

LiNE EpITING. A line editor such as ED is designed for typewriter-like terminals. It
provides commands for moving the character and line pointers about in the file, but the
location of the current character isn’t so obvious. When using a line editor you have to
concentrate a bit harder and have a clear mental picture of those little pointing hands.
This quickly becomes automatic.

All editors, then, allow you to load a file into working storage and move a pointer
around the lines and characters of the text. All allow you to make changes to the file in
the vicinity of the current character, and finally to put the changed file back on disk.

USING ED

ED is a line editor provided as part of CP/M. Here we will introduce many of the parts of
ED. Don’t expect to learn ED from this demonstration; an editor, like any other
complicated tool, is only learned through repeated practice. In this chapter you'll meet
the most important parts of ED and learn enough to get you started.

An Initial Session

ED is invoked as a command with an explicit fileref as its operand. Do it now:
ed casabian.ca
The response is as shown in Example 7-1. If the words NEW FILE don’t appear, then a

file called CASABIAN.CA already exists; do a control-c warm start, erase it, and repeat
102 the command. =t

Using ED

EXAMPLE 7-1
The result when ED is called to create a new file.

A»ed casabian.ca

NEW FILE
H *

InserTING NEW TEXT.

Now type the single letter “i” and return (be sure to type a lowercase “i”). ED
returns as a prompt the line number, 1. At this point it is ready to receive and store
anything you type. Take a few minutes to enter the lines of the poem “Casabianca” as
shown in Example 7-2. You'll find you can use backspace and control-x to correct typing
errors, as when typing commands. End each line with rerurn, and use return alone to put
a blank line between each stanza.

FINISHING THE FILE. When you’ve typed the last line of the poem, enter these things:

Z
b
#t
e

When you entered the #T (type all) command, ED displayed the whole file. The E (end)
~— command made ED put the file away on disk. Use STAT and TYPE to verify that it
exists.
That was a simple edit session. The file was new, so there was no input file. You
had ED accept your input to the file, then displayed the file as ED had it in working
storage, and finally stored it away.

Controlling the Edit Session

Pur THE FILE Away wiTH E. The edit session is begun by giving the ED command to
the CCP. It is ended with one of two commands to ED. The E command writes the
complete text into the work file, then changes the directory so that the original file has a
filetype of .BAK, and the work file has the main file's name. You used an E in the initial
session above.

Quir with No CHANGEs wiTH Q. The Q command tells ED to quit without making
any changes. The work file is erased and the original file remains as it was. Any work
you've done in the session is nullified. Try it:

ed casabian.ca
q

~— ED asks, with a note of disbelief, whether you really mean it. Answer y for yes. 103

104

Using ED

EXAMPLE 7-2
Creating the file CASABIAN.CA with ED. The editor supplies line numbers. Typing
correction works. Use the return key alone to enter a blank line.

Ared casabilan.ca

NEW FILE
L N
5 CASABIANCA
21
3: by Felicia Hemans
42

5: The boy stood on the burning deck

6: From which all but he had fled;

7: The flame that lit the battle”s wreck
B: Shone round him over the dead.

10: Yet beautiful and bright he stood,
11: As born to rule the storm;

12: A creature of heroic blood,

13: A proud, though child-like form.

14:

15: The flames rolled on and on -- he would not go
16: Without his father”s word;

17: That father, faint in death below,
18: His voice no longer heard.

19:

20: He called aloud -- "Say, father, say
2l: If yet my task is done?"

22: He knew not that the chieftain lay
23: Unconscious of his son.

24:

25: "Speak, father!" once again he cried,
26: "If I may yet be gone!"

27: -- And but the booming shots replied,
28: And fast the flames rolled on.
29:

30: Upon his brow he felt their breath,
31l: And in his waving hair;

32: And looked from that lone post of death,
33: In still, yet brave despair:

34:

35: They wrapt the ship in splendor wild,
36: They caught the flag on high,

37: And streamed above the gallant child,
38: Like banners in the sky.

39¢

40: (This is an extra stanza, put

4l: Into this stirring verse

42: So the student may delete it;

43: The song”ll be no worse.)

44:

45: Then came a burst of thunder sound --
46: The boy -- oh! where was he?

47: -- Ask of the winds that far around
48: With fragments strew”d the sea!

49: (press control-z here)

ControL THE Prompt wiTH V. Two other commands control the state of ED during
the session. The V (for visible numbers) command controls ED’s prompt. When first
started, ED prompts with the number of the current line and an asterisk. The command
-V shortens the prompt to the asterisk only. You’d only want that if your terminal were
slow or noisy (in other words, if your terminal were a typewriter), or if you were driving

—

Using ED

ED automatically from a submit file (see Chapter 8). V without the hyphen returns the
prompt to normal.

ConrroL Case with U. The U command causes ED to treat all input as uppercase, as
the CCP does. This is needed only when entering program text for some programming
languages. Otherwise it’s better to leave ED in its initial, -U, state so that it stores the
letters just as you type them.

ED ErrOR MESSAGES. ED has a very limited vocabulary of error messages. All of
them consist of the words BREAK “x” AT z, where xand z vary with the circumstances of
the message. The word BREAK simply means that ED stopped executing your com-
mand, and the character z is the last character of the command that it looked at. The
character x tells the reason it stopped. If x is a question mark, ED didn’t recognize the
command. If it is a greater-than symbol, working storage is full. If it is a sharp sign (#),
then ED couldn’t repeat the last command as many times as it was told to. That message
occurs frequently; it normally just means “finished.”

The Form of ED Commands

CommanDs ARE SINGLE LETTERS. We’ve seen four examples of ED commands. The
B, I, and E commands were typed as single letters, and the #T command took two. ED
commands are not at all like CCP commands. First, the verb of an ED command is a
single, more or less mnemonic, letter. Second, when an operand is used it is placed in
front of the verb, not after it. For instance the T command, as we’l] see later, causes ED
to type at the terminal. Its preceding operand dictates the number of lines to type.

NuMERIC OPERANDS. Several ED commands accept numeric operands, and the rules
for these operands are consistent. A numeric operand is an integer from zero up to
65535. The sharp character (#) is taken as shorthand for 65535, so that sharp means
“any and all.” If you omit the operand, ED assumes you mean 1.

S1GNED NUMERIC OPERANDS. Some commands allow their numeric operand to have a
minus sign in front of it. This means “backward,” or “toward the top of the file”; omitting
the minus sign means “forward,” or “toward the end of the file.” For example, T is a
command that accepts a numeric operand. The #T command used earlier meant “typeall
lines from the current one to the end,” whereas -2T means “type the two lines before the
current one.”

Our NotaTion For CommANDS. From now on when we refer to commands that, like
T, will take signed numeric operands, we'll name them this way: nT. Commands that
will accept only positive operands we'll refer to like this: PA. A few commands will
accept only one operand, the minus sign itself with no number. These we will designate
/B, indicating only a sign is allowed. And those commands that don’t allow operands
" we’ll just name by their letter alone. 105

Using ED

One other note on naming things and then we'll get on with editing. Some
commands head strings of characters. These are much like the marker strings you used
with the S and Q options of PIP. After the verb comes a string of any number of
characters, and the end of the string is marked with control-z. We'll use the notation
string to mean “any characters ended by control-z.”

Controlling Files and Working Storage

When it is initialized, ED leaves working storage empty. Unlike many editors, ED
doesn’t read any portion of the text until you tell it to. Observe that when you begin a
session:

ed casabian.ca
#t

ED responds with a blank line number; #T shows nothing. This is so because there is no
text in storage, and hence no lines to display.

Loap Text witH pA. The pA (for append lines) command brings some number of
lines from the source file into working storage:

1a
#t

The first line of text has been brought in. Its first character is current. The current line, as
the prompt tells you, is 1. Then

10a
#t

brings in 10 more lines; the #T command displays all of them.
Most of the files you edit will fit comfortably in working storage. Use the sharp
notation for “all” and bring in the rest of the file:

#a
#1

CHECK AVAILABLE SPACE witH OV. Now let’s see how much working storage is
available:

Ov

The OV command produces a display of the number of bytes of storage currently free anc
106 the number of bytes in total that ED can use. On a 64K system the response will be -

Using ED

something like 37000/38300 (37,000 free bytes out of 38,300 total bytes). Our little
Casabianca file has barely scratched working storage.

WRITE TO THE WORK FILE with pW. Had the source file been a great deal larger, it
would have completely filled working storage. When you gave the #A command ED
would have reported its cryptic > error, meaning “full.” At that point you could make
room by writing some of the top lines out to the work file with the pW command:

35w
#t

Note that when the current line (line 1 in this case) is written out, the pointers move down
to the first remaining line.

ALTERNATING pA AND pW. The lines written out are safe, but out of reach for editing.
Thus when editing a large file, use pA to geta good chunk of data, make changes in that,
then use #W to put the data away. Repeat until the whole file is done.

StarRT OvER with O. It’s inevitable that sooner or later you’ll so foul things up that
you want to start over. The O (original file) command does that. O is the equivalent of
doing Q (quit) followed by calling ED again. It is just the same but a bit quicker. Try it
now:

0
#a
#t

RETURN To THE ToP witH H. It’s also inevitable that sometimes you’ll get half a large
file written out and then remember a change you forgot to make at the top. The H
command gets you back to the top with all changes intact. It does so by doing exactly
what E (end), followed by recalling ED, would do. That is, it makes all the changes done
so far permanent, and then starts over on the altered file. In effect H begins a new edit
session on the altered file.

Displaying Text
Display commands are the most common ones as one of the common uses of an editor is
to browse through a file. ED’s display commands are nT and nP (for type and page—not

print—respectively).

Uses oF nT. T displays some number of lines. To get the full sense of what it does,
you have to get the character pointer in the middle of a line in the middle of the file:

16l
15¢

107

108

Using ED
(The nL and nC commands are described later; they move the pointers.) Now try

t

1t
ot
otit
ott

and think for a minute. T and 1T are equivalent (an omitted operand is assumed to be 1,
so T is assumed to be 1T). Both show the current line from the character pointer through
the return-linefeed pair that marks its end. Note carefully that they don’t necessarily
show the whole line. The current character might be somewhere in midline.

OT shows the current line from the beginning up to, but not including, the current
character. If the current character is the first character of the line—as was always the case
up until now—then 0T shows nothing, and 1T shows the whole line.

E~TRY OF MuLTIPLE COMMANDS. The last two entries show an important feature of
ED. You may string together as many ED commands as you like, one after another.
OT1T and its equivalent OTT say, “Type the start of the line up to the current character,
then type from the current character to the end of the line.”

OTT ALways SHows THE WHOLE LINE. OTT will always type the whole current line,
regardless of where in the line the little pointing hand may be. T alone may type the
whole line, but only if the current character is the first of the line.

MuLtipLE LINES. Let’s get it back to the head of the line and try other versions of nT.

-15¢c
-3t
3t
-5t5t

The nT command displays the n lines preceding the current line, or the current line and
n — 1 more lines after it.

DispLAY Paces with nP. Return to the top of the file and try the nP command:

b
Op

The OP command displays 23 lines beginning with the current line. Twenty-three is a
convenient number of lines. Provided that each text line fits on one display line, which
isn’t always the case, then 23 text lines just fill the screen, leaving one line on which to
enter the next command. Now try

p

Using ED

The P command (or 1P, which is the same) advances the line pointer 23 lines, then
displays 23 lines starting with that one. The nP command allows you to walk through the
file in screen-size chunks, forward and backward. It's very convenient for a long file.

Controlling Line and Character Pointers

We’ve seen how ED is made to load the source file and save it again, and how you get
ED to display the source with the nT and nP commands. In the next section we’ll see
how to alter the text, but one set of commands must be covered first. That set gives you
precise control over the location of the line pointer and character pointer. These pointers
mark the only characters of the text that ED can alter.

Go To Tor or Bortom witn sB. We’ve used one pointer control already, the sB
command. Try it now:

B alone puts the line pointer on the first line in working storage, and T displays it. -B puts
the line pointer in limbo; the prompt contains no line number and T displays nothing.
What happened? The -1T command shows what happened. The line pointer is aimed at
empty space just after the last line in working storage. Displaying the prior line with -1T
shows you the last line of the text. This odd behavior has a purpose, as we’ll see later,

MovVE THE LINE POINTER Witk L. The nL command moves the line pointer # lines
relative to its present location. Watch the prompt numbers during this sequence:

b
5l
-2l
8l
-8l
|

The new line number after an nlL command is the old line number plus n.

Move anp DispLay with nLT. If you want to see the line to which you’ve moved, you
may append a T command to the nL command:

b
5l
oltit

109

Using ED

Whenever you explicitly move the line pointer (with sB, nP, or nL), the character
pointer is reset to the first character of the new line. Then T will display a whole line.

SHORTHAND FOR nLT. As a convenience ED will take a number n, alone in the input,
to mean “nLT.” As a further convenience it will take return alone as meaning 1, that in
turn meaning 1LT. Thus you can walk through a file in small steps very easily:

b
5
8
return
return

Go 1o SPECIFIC LINES WiTH num:. One last way of moving the line pointer is most
useful when you know just what line number you want. You might, for example, be
working from a printed listing of the file, made by PIP using the N (sequence number)
option. Then you might say, “I want to fix lines 16 and 21." Instead of stepping to those
lines with nL (and doing the mental arithmetic to figure out the right value of 1) you can
simply give the line number as a num: command:

b

12

18:t

6:t —

The nwm: command moves you directly to the line you name.

Move THE CHARACTER POINTER wiTH nC. You can now move the line pointer
anywhere you want it, but in order to change text you must be able to move the character
pointer as well. There is only one specific command for that, nC.

b

ot
19c0t
1cOt
1c0t
-5¢c0t
ol

ot

t

The nC command moves the character pointer within the line, n characters relative to its
present location. The OT command shows the line from the beginning up to (but not
including) the current character.

GET 10 THE HEAD OF THE LINE WiTH OL, The text alteration commands usually move
110 the character pointer as well, as a by-product of their work. You can always get the

Using ED

character pointer back to the head of the line by giving any nL. command, including OL,
which keeps you on the same line but moves the character pointer back to the first
character.

Inserting and Deleting Text

We come at last to the purpose of an editor—the alteration of the text that so far we have
only loaded and displayed. Text can really only be changed in two ways: You can delete
it, and you can insert new text. If you think about it, any change of text, no matter how
complicated, can be reduced to deleting erroneous text and inserting correct text. In fact,
ED has commands that combine deletion and insertion in one command. They’ll come
later.

DIFFERENCE BETWEEN | AND i. Let’s start with insertion. We've already used line
insertion to create our file. At that time you were warned to use a lowercase command
letter i. The reason for that was that the | command has an undocumented feature that
often causes confusion. If the | command is given in uppercase, it forces all the inserted
characters to be uppercase. If it is given in lowercase, it inserts what you type in the case
in which you typed it.

InserT TEXT WITH | At any rate, two stanzas of the poem were left out of the original
copy, one in the middle and one at the end. Using the (lowercase) | command, insert the
" middle one now:

b#t

34l

|

And shouted but once more aloud,

“My father! must | stay?”

While over him fast, through sail and shroud
The wreathing fires made way.

return

“Z

-8t

INSERTED TEXT PRECEDES THE CURRENT LINE. Notice that the new text went into the
file above the current line. That is how the | command operates. It does that so that you
can add new lines at the very top of the file. If the current line is 1, you may still insert
lines ahead of it. Following the insertion the current line was still the same line as was
current before the insertion was done. This is convenient because you can type in some
inserted text, end with control-z, look at the text, and then resume the insertion.

INSERTION CHANGES LINE NuMBERs. Notice that the line numbers have changed. The
current line was 34 before the insertion; it is numbered 40 now even though the line is the
same. ED gives line numbers that reflect their position in the file. If you add lines above

111

112

Using ED

the current line, the current line and all after it get larger numbers because they are now
farther down in the file than they used to be.

Work FrROM THE Bortom Up 1O PRESERVE NUMBERING. This is not a problem
unless you are working from a printed listing with line numbers. If you are, and you
mean to add 20 lines around line 27 and then make changes near line 250, you will find
that by the time you get to it, line 250 has become line 270. This is annoying. The
solution is simple. When working from a numbered listing, work from the bottom of the
file up! The line numbers at the top of the file won’t change regardless of what you do
below them.

INSERTING AT THE Borrom. Let's finish inserting that last stanza:

-b-1t

i

return

With mast, and helm, and pennon fair,
That well had borne their part—

But the noblest thing that perished there
Was that young faithful heart.

"z

-6t

Now you can see why the -B command puts the line pointer after the last line rather than
upon it. The | command inserts text above the current line. If you couldn’t get the line
pointer below the last line, you couldn’t add text at the very end of the file.

INSERT PHRASES WITH |string. In the original copy the author’s middle name was
omitted. Insert it now. To do so we’ll use a second form of the | command, Iszring (recall
that by string we mean any characters ended by control-z). This inserts “string™ to the left
of the current character. Which is the current character? It is the first character that prints
on a T command. Make the “H” of “Hemans” be the current character:

b2t
11c
Ot

t

If the last character printed by OT (the character left of the asterisk, which is ED’s
prompt) isn’t a space, and the first character printed by T isn’t an “H,” then adjust the
character pointer with nL and nC commands until these things are true. Then insert the
author’s middle name:

iDorothea "Z
Ott

If you omitted a space after “Dorothea,” insert it now, using the same form of the |
command.

—

Using ED

DeLeTE Lines with nK. Deletion, like insertion, can be done by lines or by charac-
ters. The nK (for kill) command deletes lines. There is an extra stanza in the original
copy; take it out now.

45:
5t
5k
-2t3t

ANTICIPATE DELETION wiTh nT. 1K deletes exactly the lines (or characters) that nT
types, when the n’s are the same. This is a good way to judge a line-delete command
before you give it. If nT displays exactly and only what you want to delete. then nK with
the same n will delete just that.

DELETE CHARACTERS WiTH nD. Characters are deleted with the 1D command. #D
removes 1 characters. When n is positive, removal begins with the current character and
moves right. When » is negative, removal begins just left of the current character and
moves left.

There is an excess word in the original copy. Let’s take it out:

15:
27¢0t

Get the letters “and on” just left of the current character (so that they display just left of
the asterisk). Then delete them:

-7d
ot
Ott

Now that you can insert and delete, you can, with some labor, make any kind of
correction in a file.

Text Substitution

REPLACE PHRASES WiTH pS. The labor of replacing parts of text is reduced by the pS
(for substitute) command. This command has the form:

pS string string

You'll recall that p means that S accepts a positive operand only. The pS command does
this: It searches ahead in the text for the first string; when it finds it, it replaces the first
string in the text with the second string. It repeats these actions p times, or once if pis
omitted. This saves a lot of nl. and nC moves. pS can take the place of nD as the second

113

114

Using ED

string may be null (consist only of a control-z). Substituting nothing for something
amounts to deletion.

The pS command, like the | command, behaves differently depending on whether it
is typed as a lowercase or uppercase letter. If the command letter is entered as “S”, it will
treat both strings to uppercase. If it is typed as “s”, it will leave them as they were typed.

There is an incorrect word in the second line of the first stanza. The phrase *From
which” should be “Whence” and we’ll fix it now:

b5It
sFrom which"ZWhence"Z
Ott

If ED reports its BREAK “#" AT "Z message here, it is trying to say that it couldn’t
locate the first string even once. You probably didn’t type “From which” exactly as it
appears in the file.

MuLTiPLE SussTITUTIONS. The p in pS is another labor-saving device. If there are
several places where identical changes are to be made, you can cause them all to happen
at once with a single command. For example, Mrs. Hemans preferred to use the poetic
“o’er” instead of the “over” used in your copy. We can change both uses of “over” with
one command:

b
#sover'Zo'er'Z
b#t

After doing the replacement twice ED can’t find any more instances of the string “over,”
and reports BREAK “#" AT "Z.

ED also supports an elaborate pJ (for Juxtapose) command. When you know ED
better you should take a look at that.

Searching for Text
Often you want to locate a specific piece of text. In a short file you can simply walk
through with nP and nT until you find what you want. In a longer file this is a waste of

time.

LocaTe PHRASES WiTH pF. The pF (find) command locates a string of text for you. Its
form is

pF string
and it locates the pth occurrence of the string, beginning its search with the current

character.
When the search stops the current character is the one immediately following the

Using ED

search string in the text. This sets you up to insert characters just after the string, or to
delete it with -nD, or to delete the following letters with nD.

Like | and pS, the pF command is sensitive to the case in which you type it. If it is
entered in uppercase, it will treat its search string as uppercase and hence can only find an
uppercase phrase.

Let’s find two occurrences of “flame”;

b

fflame™Z

ot

Ott

b
2fflame"Z0tt

SEARCH THE WHOLE FILE witpN. ED also has a pN command that operates just like
pF. pN has the additional function that when the search reaches the end of working
storage, pN causes pW and pA commands to be done to read more of the file from disk .
This lets you begin editing a very large file by searching directly to the first editing point.

Macro Commands

In computer jargon a macro is almost any grouping of smaller units, especially com-
mands or instructions grouped for the sake of simplicity. ED allows a macro to be
formed from a list of individual commands with the pM command. The form of the
command is:

pM any-commands-at-all-except-M

and it causes the entire command list to be performed p times. Here's a simple example
of pM:

-b
10m-1

That macro lists the last 10 lines in reverse order. The command -1 (equivalent to -1LT)
is performed 10 times.

Mrs. Hemans, the author of “Casabianca,” preferred to form the past tense of a verb
with “’d” rather than with “ed.” The following macro command will use pS to change all
“ed” words to “’d” and display the changes with OTT as it goes.

b
#msed "Z'd "Z0tt

It takes some thought and imagination to use pM, but the command can be
invaluable.

115

116

Chapter 8

Library
Organization and
SUBMIT

DISKETTE CARE
Diskette Hazards
Diskette Accessories

PREPARING A NEW DISKETTE
Mechanical Preparation
Formatting
SYSGEN
Receiving Distribution Diskettes

ORGANIZING THE LIBRARY
Categorizing Diskettes

ORGANIZING A HARD DISK
The User Code
Hard-Disk Backup
Organizing Under MP/M

AUTOMATING WITH SUBMIT AND XSUB
The SUBMIT Command
SUBMIT Parameters
The XSUB Command
Uses of SUBMIT

117
117
117

118
118
119
119
121

122
122
124
125
126
126

127
127
129
130
132

Diskette Care

Your library of files is central to your system. In this chapter we consider how to care for
and organize that library. We'll discuss how to care for diskettes and how to prepare
them for use. Then we’ll talk about organizing the library on the disks, and how to back it
up. Finally, we’ll introduce two commands, SUBMIT and XSUB, that can automate
these and other tasks.

DISKETTE CARE
Diskette Hazards

Dirt. A diskette is a miracle of precise manufacture that is sent into the world with
holes in its jacket. The slightest abrasion or soiling of its surface can make a file
unreadable. Murphy’s law assures us that this won’t be discovered until just when that
file is needed most. A diskette should be returned to some kind of protective case the
moment it leaves the drive. A diskette left exposed to the cigarette ash, coffee, thumb
prints, and cat hairs of this world is a diskette that will let you down.

Hear. The black plastic jacket of a diskette absorbs heat quickly. A dramatic demon-
stration of this occurred when the photographs shown in Chapter 2 were being taken. An
8-inch diskette was posed under two floodlights while the camera was focused. In less
than 5 minutes a pucker appeared in its jacket. As the photographer reached out to rescue
the diskette, the jacket wrinkled all over and folded backward under its own weight!
Summer sunlight through a window could easily have the same effect.

MagnETs. Data are recorded on a diskette in the form of very slight changes in
magnetization. A strong magnetic field can alter the recorded data, making the data
unreadable. Electric motors, hi-fi speakers, and telephone ringers all emit magnetic
fields that can alter a diskette if it approaches them closely enough. Magnetic fields
decline rapidly with increasing distance, so a separation of a few inches is probably
sufficient protection. However, a separation of a few feet is better.

PENs AND PEnciLs. New diskettes come packed with a set of gummed labels. Stick as
many labels as you like on a diskette, as long as you don’t cover any of the holes in the
Jacket. When you write on a label, write lightly with a felt-tip pen or fountain pen. Never
use a pencil; dust from the lead might get on the recording surface. Avoid ballpoint pens;
it’s easy to bruise the plastic surface inside the jacket.

Diskette Accessories

STORAGE GADGETS. As diskettes have come into wide use, the number of diskette
accessories on the market has grown. Those who like gadgets can have a fine time
shopping for flip files, special binders, storage boxes, and diskette mailers. Most of
these gadgets are useful. Choose some that let you store the diskettes so that they are

117

118

Library Organization and SUBMIT

clean and safe, yet still easy to find. The simplest organizing gadget is also one of the
best. It is a clear plastic sleeve punched for an ordinary three-ring binder. Each sleeve
holds a diskette in such a way that it can be seen. The binders are inexpensive and easy to
store. It's handy to store a diskette in its sleeve in the same binder that holds the
program’s documentation.

HoLE REINFORCERS. Several companies sell diskette hole reinforcements (like over-
size ring-binder reinforcements) that strengthen the edge of the diskette’s center hole. It
should not be necessary to reinforce your diskettes. Hole damage is rare and is usually
the result of careless handling. Installing the rings is a fussy job that exposes the diskettes
to more handling than is desirable.

Heap-CLEANING KiTs. There are various sorts of head-cleaning kits on the market; all
carry high-technology prices. The read-write head in each drive ought to be cleaned a
couple of times a year. If you can reach it without disassembling the drive, you can clean
it with a cotton swab dipped in isopropyl alcohol—both available cheaply at a drugstore.
If you can’t get at the head without a lot of work, buy a kit for the time it can save you.

PREPARING A NEW DISKETTE

You can usually pop a brand new diskette into a drive and save files on it at once. That
isn’t a good idea, but it will work. It's better to put each new diskette through an
initialization process. Then you can be confident that all of your diskettes are prepared in
the same way.

Mechanical Preparation

Give IT aN IDEnTITY. Every diskette needs a unique identifier, a tag that refers to that
diskette alone. The tag should not relate to the diskette’s contents because it may be put
to many uses in its life. The unique tag lets you relate read errors through the tag to the
batch the diskette came in, and to the supplier who sold it.

O~NE NUMBERING SCHEME. One way to give each diskette a unique identity, assuming
you don’t buy more than 10 boxes a year, is to form a three-digit number that describes
the age and source of the diskette. The first digit is the last digit of the year of purchase,
the second the number of the box, the third the number of the diskette within the box. The
third diskette drawn from the first box bought in 1982 would be numbered 203.

Cover THE WRITE-PrOTECT NOTCH. If these are 8-inch diskettes, check for a
write-protect notch on the lower edge. Not all new diskettes come with notches. If there
is one, cover it with a small gummed label. If you forget to, you'll have a puzzling IO
error report from CP/M when you try to format the diskette. A sheet of such labels is
usually packed in the diskette box.

Preparing a New Diskette

Formatting

To format a diskette is to write every sector of every track at the sector size and density
that you will use. New diskettes are usually formatted at the factory, but the factory’s
drives and yours might not agree. Formatting ensures that the tracks are laid down in
precise alignment with the read-write head in your drive. It also sets the density and the
sector size that you will use.

THE FORMATTING PrOGRAM. Formatting is done with a program that is supplied by
the vendor of your system. Each make of disk controller hardware requires a different
program to direct formatting. The vendor supplies a formatter as part of the process of
customizing CP/M to your hardware. Formatting takes about 30 seconds; afterward the
diskette is completely empty of data.

UsING THE FORMATTER. Your command dialogue with the formatter will depend on
the formatter you have been given. Example 8-1 shows a dialogue with the formatter
supplied by one vendor; yours will be similar. Most formatter programs are arranged so
that you can format one diskette after another without recalling the program.

HazArDS OF FORMATTING. Be very careful with a formatter. It pays no attention to the
existing contents of the diskette. You can format a diskette that is full of good data. Most
will format the diskette in the A-drive as readily as any other. Formatting is quick. If you
start the formatter on the wrong diskette, it will have overwritten the directory before you
can hit reset to stop it. It is a good idea to remove the diskettes from the other drives
before starting the formatter.

SYSGEN

THE BoorsTRAP TRACKS. In Chapter 5 we told you to use practice diskettes that were
bootable, that is, diskettes that had a copy of the Monitor on their first (outermost)
tracks. That copy is not a file in the usual sense. There is no file directory entry for it, and
the space it occupies is not allocated in the file system’s usual way. CP/M dedicates the
outermost two tracks (three tracks on a 5-inch diskette) to be a place where the code of
the Monitor and CCP can be saved, ready for bootstrap loading.

EXAMPLE 8-1
A dialogue with a diskette formatting program as written by a particular vendor—others are
similar.

A>ddinit

CCS DISK FORMATTER PROGRAM V2.0 - 8 INCH ONLY
WHICH DRIVE (A-D)? B

SINGLE OR DOUBLE DENSITY (5/D)? D (formatter runs)
WHICH DRIVE (A-D)?_)

119

120

Library Organization and SUBMIT

ADVANTAGES OF BOOTABLE DISKETTES. There are advantages to making disks “boot-
able,” that is, to putting a copy of the Monitor on the bootstrap tracks. The space is
permanently reserved and can’t be used for files whether there’s a Monitor copy in it or
not. Any bootable diskette can be put into the A-drive and left there. If a diskette without
the Monitor is in the A-drive and you call for a warm start, the system will report an 'O
error. If you press reset when the A-disk is not bootable, the system will hang. Either of
these things can puzzle or frighten an inexperienced user.

A SERIOUS DISADVANTAGE. There’s one drawback to making every diskette bootable.
The program that is written on the bootstrap tracks—the Monitor—is protected by
copyright. Your license agreement with Digital Research permits you to make just five
copies of the Monitor or any other part of the CP/M package. That puts you in a bind. The
advantages of reproducing the Monitor (and certain commands, such as STAT and PIP)
are many, but to do so puts you in violation of the letter of your agreement (which you
should have read carefully, and if you haven’t done so before, do it now). We’ll return to
this topic later.

Tue SYSGEN Commanp. The command that places a copy of the Monitor on the
reserved tracks of a diskette is called SYSGEN in the standard CP/M system. This
program, like the formatter, may have been customized by the vendor and may have a
different name. Your CP/M manual contains an example of the use of standard
SYSGEN.

Use oF SYSGEN. Example 8-2 shows a dialogue with a version of the program that
was modified by a vendor. The program asks for a source from which it can read the
Monitor. Normally the source is another bootable diskette (in Chapter 15 we’ll see where
the original copy comes from). Then it asks fora destination drive, the letter of the drive
into which you've loaded the new diskette. When told the destination, the program
writes a copy of the Monitor onto the new diskette's reserved tracks and waits again.
Like the formatter, the program is arranged to write on one diskette after another without
reloading the program. You can run a box of diskettes through formatting and then
through SYSGEN, all in a few minutes.

EXAMPLE 8-2
A dialogue with a SYSGEN (Monitor copy) program as written by a particular vendor. See
the CP/M documentation for a similar dialogue,

R

A>ccsysgen
CCS SYSTEM GEWERATION PROGRAM VERSION L.0

SCURCE DRIVE: A
SOURCE ON A, THEN TYPE RETURN

DESTINATION DRIVE: B

DESTIMATION ON B, THEN TYPE RETURN
(sysgen program runs)

DESTINATION DRIVE: _

Preparing a New Diskette

Common Commanps. There are a few command files that it’s convenient to have on
every diskette regardless of its use (but see the foregoing comments on copying licensed
code). STAT, PIP, and your favorite editor are the most useful ones; you will think of
others as you establish patterns of work. These are the commands you use so often that it
is an irritation to find them absent, or to have to give an explicit drivecode before the
command verb to load them.

CommoN CoMMANDS ON THE OUTER TRacks. Commands in frequent use should be
copied onto each new diskette as you initialize it. There is a performance advantage in
having the most common commands first on the diskette and first in the directory
because CP/M can find and load them more quickly that way. Once copied they might as
well be given the SYS attribute so that they won’t clutter a directory display, and the R/O
attribute so that they can’t be erased easily. If you read Chapter 5 carefully, you should
be able to work out the list of commands needed to do these things. Don’t forget that if
the common commands have the SYS (hidden) attribute on the source diskette, PIP
won’t be able to find them without the R (read hidden files) option. The entire
initialization command sequence is shown in Example 8-3. Later we’ll see how to
automate it.

Receiving Distribution Diskettes

Your library will receive additions from the places that supply you with software. New
software comes on diskettes. These distribution diskettes are precious, for they hold the
authoritative and original copy of the software.

The first thing to do with any distribution diskette is to write-protect it (cover the
notch of a 5-inch diskette, or peel the cover off the notch of an 8-inch one). The second
step is to make a copy of all the files onto another, freshly initialized, diskette. This
creates a writable working copy of the software and ensures that every file can be read.

The third thing to do with a distribution diskette is to pack it away in a safe place,
never to be read again except in the event of a disaster. It’s not at all ridiculous to remove
it to a different building from the one that houses the computer. If there is tailoring or
customization to be done, do it and then file a copy of the tailored version with the
original.

CopyING LICENSED SOFTWARE. Fee software may be copied again and again around
the library onto any diskette where it will be needed. The publishers of fee software
would like to control the proliferation of copies of their code, as we noted previously.
But achieving a balance between their desires and your convenience is sometimes
difficult. The license agreement you sign and return to a software publisher amounts to a
legally enforceable contract. The license agreement for one language translator allows
“two additional copies only, for backup purposes.” And this is for a program that must be
present to use any program written in that language! Can you obey the spirit of the
agreement—preventing the theft of the publisher’s work—while ignoring its letter?
Should you do so? Each system owner has to resolve these questions.

121

122

Library Organization and SUBMIT

EXAMPLE 8-3
Command dialogue used in preparing a new diskette.

A>ddinit
CCS DISK FORMATTER PROGRAM V2.0 - 8 INCH ONLY
WHICH DRIVE (A-D)? B

SINGLE OR DOUBLE DENSITY (S5/D)? D (formatter runs)
WHICH DRIVE (A-D)? {only return entered)
A>cesysgen

CCS SYSTEM GENERATION PROGRAM VERSION 1.0

SOURCE DRIVE: A
SOURCE ON A, THEN TYPE RETURN

DESTINATION DRIVE: B
DESTINATION ON B, THEN TYPE RETURN
(sysgen program runs)
DESTINATION DRIVE: {only return entered)

A>pip b:=a:stat.com[vr]
A»pip b:=a:pip.com|vr]
A>pip b:=a:ed.com[vr]
A»stat b:*.com $r/o
STAT.COM Set to R/O
PIP.COM Set to R/O
ED.COM Set to R/0O
A»stat b:*.com $sys
STAT.COM Set to SYS
PIP.COM Set to S5¥S

ED.COM Set to S5Y5
A>_

ORGANIZING THE LIBRARY

People who enjoy organizing things are in their element around a computer system.
Nowhere are there so many things in need of organization, or so many ways of
organizing them. In this section we’ll suggest one of the many lines along which a
diskette library might be organized. As time passes you'll develop your own ideas on
how it should be done. The important thing is to make the machine do as much of the
work as possible.

Categorizing Diskettes

One way of categorizing diskettes is by the kind of use they’re given. The way you use a
diskette affects the files you put on it and the importance of backing it up.

DistrisuTiON DiskerTES. One kind of use is that accorded a distribution diskette. It is
write protected, copied, and put away. The final version of a program created on your

Organizing the Library

own system might well be put on its own distribution diskette and filed with the fee
software,

Work DiskeTTES. A second kind of usage is accorded what we'll call a work diskette.
This is one that is used as you would use a chalkboard. On it you can write any file at all
for any temporary purpose. A work diskette is the place for casual memos, test versions
of programs, the listing file written by a compiler—anything of only transient import-
ance. It should be bootable, of course, and it should have a copy of every command you
normally use, set to R/O status.

As a matter of policy any unprotected file on a work diskette should be considered
expendable. Anyone who needs space on the diskette may erase anything there, just as
anyone who uses a chalkboard may erase it. A file might be marked R/O in the way one
might leave a note on a chalkboard to “please save.” But since a work diskette won’t be
backed up, damage to the diskette will cause the loss of whatever files were there.

When the system is used by more than one person, the users may have their own
work diskettes, which they can carry away from the machine. It should be clearly
announced that any work diskette left in a drive is fair game; important files must be
copied on more permanent storage.

ProJecT DISKETTES. A project diskette is one that is used as a repository for important
files. Each project diskette would contain the files that represent the current state of one
project, one unit of the business. You may define a “project” to be anything you
like—Accounts Receivable, The Mailing List, My Correspondence 3Q82, and so on.

Because a project diskette contains files related to a single well-defined unit of your
computer work, you can always lay your hands on the files that define that work. The
scheme has the minor disadvantage that most project subjects won't fill the diskette
allotted to them. You might have a lot of project diskettes, with each only partly full. The
convenience of knowing where everything is should cover the minor cost of a few more
diskettes. Organizing diskettes by projects aids the solution to some data security
problems (discussed in Chapter 4).

The files on a project diskette are important in some way to your work. They should
never be altered casually. If there is anything dubious about a change, the file should be
copied on a work diskette and the change made there. When the change is known to be
good, the file can be copied back.

Backup DiskeTTES. Backup is the computist’s word for making copies of important
files against the inevitable day when a file is lost. The purpose of making backup copies
is to minimize the loss when data are destroyed. People new to computers find it difficult
to understand that a magnetic record is not permanent in the way that a paper document
is. A paper document can be drenched, torn, and toasted, and still be readable. A
magnetic record is robustly there, or it isn’t there at all. Blur half the letters on a page,
and a person can still make sense of the writing. If one single bit of a sector reads wrong,
adisk drive will report an error. And of course it’s possible to erase files, or format disks,
accidentally—a more thorough erasure than sending papers through a shredder. There
are few sensations as sickening as the realization that one has just destroyed an important

123

124

Library Organization and SUBMIT

file. One slip of the finger, one carelessly typed command, and the data are gone,
instantly. At such moments it is a great comfort to know that a backup copy exists, If
backup is taken on a weekly schedule, then you have lost at most a week’s work: if daily,
at most a day’s. The job of bringing the backup copy up to date is much easier and much
less costly than the job of recreating a file from scratch. Given a specific situation, you
could analyze the economics of backing up a file—so many hours of work to recreate the
file from scratch, so many to make up a week’s updates, so many minutes to make
regular copies, and some assigned probability of loss. A simpler way to decide on
backup frequency is to gauge the panic factor. Pretend to yourself that you’ve just been
told, “The receptionist watered your XYZ project disk along with the Boston fern,” and
measure the depth of the sinking feeling in the pit of your stomach. For each project
diskette, ask yourself, “How badly would it hurt to lose these data? What would it do to
my schedule?”

A backup diskette is one that holds nothing but backup copies of files. It need not
contain any commands. A backup diskette doesn’t have to be limited to a single project;
it might hold copies of several partly full project diskettes, provided that all were on the
same backup schedule.

You’ll have a pool of backup diskettes and a schedule for backing up each project
diskette. “Backup every Friday night” might be schedule enough. If the filerefs for a
project have been planned carefully, one or two PIP commands will suffice to move the
important files to the backup diskette. We'll see later how it can be automated.

Once filled, the backup diskette should be stored away from the rest of the library,
in a fireproof safe or in another building. To a business, backup diskettes represent a
small security exposure. It’s easier to borrow, copy, and return a backup diskette than
one in daily use.

ORGANIZING A HARD DISK

A hard disk presents itself to CP/M and MP/M as one or more large, always loaded
diskettes. The commands presented in Chapter 5 work the same on a hard disk as they do
on diskette. The hard disk simply provides more space and faster access time.

LogicarL Drives. The hard disk can usually be partitioned into several areas, each of
which acts like a single drive. If your system has two diskette drives and a 15 MB hard
disk, you can have it set up so that the diskette drives are A and B, whereas areas of the
hard disk appear under drivecodes C, D, and E, each with 5 MB of space. C, D, and E are
then logical drives (“logical” as an adjective is computer jargon for simulated). The hard
disk’s space need not be divided evenly among its logical drives.

PROBLEMS OF ORGANIZATION. The hard disk presents problems of organization
because the data on it can’t be loaded and unloaded as diskettes can. You can erase files
and copy in new ones, but you cannot conveniently carry one group of files away and
load a new group. This implies that the hard disk should play the role assigned to project

Organizing a Hard Disk

diskettes. Each logical drive can contain the files representing one (fairly large) unit of
work. One logical drive might play the role of work disk for all users.

The User Code

Itis easy to place more files on a logical drive than will fit on the terminal’s screen when
DIR is used. At that point it becomes difficult to keep track of what files are available. It
would be convenient to be able to make subsets of the files stored on a large disk so they
could be dealt with more conveniently. CP/M offers one aid toward this, a user code that
qualifies all fileref searches.

THE USER Command. The user code is a number from 0 to 15. There is at all times
one active user code. Aftera cold start, the active user code is 0, The active user code can
be changed with the USER command, whose form is

USER usercode

OPERATION OF THE USER CODE. When a file is created, the user code active at the time
is written in the file’s directory entry. When the directory is searched to locate a file, each
entry’s user code is checked against the code active at the time the search is made. If they
are the same, the file is visible. If the active code is different from the code recorded in a
directory entry, that file is invisible. DIR will not report on it, nor can any command,
with one exception, access it. The effect is to divide the library into subsets, each
accessed under its user code.

ProBLEMS OF THE USER CobE. The user code has little value in a system that has only
diskette drives. The reason for this is that only the files created under the active user code
can be found, and that applies to command files as well. Move from the normal user code
of zero to another number and issue the STAT command. The reply will be STAT?,
indicating that no such command file exists.

This behavior of CP/M means that in order to work under a user code other than zero
you must store a copy of every common command file under each user code. This is not
practical in the limited storage capacity of a diskette drive.

User codes become slightly more useful when the large capacity of a hard disk is
available. Even so, you might have a program stored under user code 3 and want to run it
against a file recorded under user code 0. It can’t be done. One file must be copied into
the other’s user code.

PIP anp User Copes. PIP is able to copy from one user code to another. The G
option of PIP tells it to search for the source under some particular user code. Thus pip
a:=b:file[g3] would locate FILE on the B-drive under user code 3 and make a copy on
the A-drive under the active user code. One problem remains: How do you make a copy

125

Library Organization and SUBMIT

of PIP itself under another user code? The answer for CP/M 2 appears in the Reference
section as an example of the SAVE command.

User Copes anp THE HarD Disk. You could use user codes to partition a large
logical drive into as many as 15 different project sets, one under each user code. Users
would work under user code 0 most of the time, copying project files to the work drive
with PIP and moving to the project’s user code to copy them back again.

Hard-Disk Backup

It is absolutely essential to have a backup policy for a hard disk. A hard disk holds as
much data as dozens of diskettes. If a diskette is spoiled, you’ve lost at the most the files
of one project; an accident that would wipe out your entire library is very unlikely. With
a hard disk, all of your eggs are definitely in a single basket. It is entirely possible that a
hardware failure could make everything on a hard disk inaccessible. If there is a failure in
the electronics of the drive so that the drive is unusable and must be sent out for repair,
you cannot be sure that there will be any data on it when it comes back.

Backup To DiskeTTE. There are two approaches to backing up a hard disk. First, you
can arrange to back up individual files or groups of files. As long as each file is small
enough to hold on one diskette, such copies can be made on diskette (and automated).
This approach might be adopted by one user of the system who wanted to keep backup
copies of his or her personal files.

Backup To Tare. The second method is to copy larger units of data onto reels or
cartridges of tape. Tape solves the capacity problem; depending on the design of the tape
drive and the length of the tape itself, from 1 to 15 MB of data can be copied. Tape
introduces a new problem, however. Backup to diskette is done file by file with PIP.
Backup to tape is usually done with a special program. To make a lengthy process faster,
such programs usually copy entire tracks without regard for file organization. Therefore,
a single file can only be recovered by restoring the entire tape, taking all files on that
logical drive back to the time the tape was made.

Organizing Under MP/M

An MP/M system is very like a CP/M system. All of the familiar commands work in the
same way. The difference is that several users, each with a terminal, can use the system
simultaneously. Each user is given an area of working storage and a portion of the
machine's attention. All users have access to all drives.

User Copes INMP/M. Under MP/M the user code is a very useful organizing tool. In
MP/M each active user has an associated user code. In addition, each user, regardless of
126 his or her active code, can see and access files created under code 0. The commands and

Organizing a Hard Disk

files needed by all users can be grouped under user code zero, whereas each user’s
private files are kept under another number.

Under MP/M 2, access to files under user code 0 has been restricted to files that
have the SYS attribute, and then only when they are to be read. This makes user codes an
even better organizing tool.

Harp Disks v MP/M. With MP/M a hard disk may be partitioned very nicely into
logical drives and, within drives, by user code. The G option of PIP is still needed to
move files between user codes, but there is much less need to do so.

Backup IN MP/M. MP/M presents a new problem when it is time to take a backup
copy from a hard disk. The backup copy will be invalid if any of the copied files are
changed while the copy is being made. This could occur if a user at one console is
working while the backup is being done at another console. The MP/M command
DSKRESET can be used to make logical drives inaccessible while the backup is made.

AUTOMATING WITH SUBMIT AND XSUB

You'll find that system management tasks often involve stereotyped sequences of
commands. When initializing new diskettes, for example, the same list of commands
must be repeated over and over. The first few times you do it, such a task is a challenge
and hence interesting. Later, it’s just a chore. SUBMIT is a command that automates the
execution of such command sequences. We’ve put off introducing it to this point so that
we could show a real use for it.

The SUBMIT Command

The SUBMIT command causes a file that contains a list of commands to be handed over
to the CCP for execution. The CCP will do the commands one by one as they appear in
the file, just as if the list were entered command by command from the keyboard. This is
a powerful tool for managing the system’s work.

Tue Form orF SUBMIT. The form of the SUBMIT command is
SUBMIT filename parameter-values

Note that the operand is not a complete fileref, only a filename (and possibly a
drivecode). The parameter values will be described later.

OreratioN oF SUBMIT. SUBMIT assumes that the filetype is .SUB and looks for a
file of the given name and that type. When SUBMIT finds the file, it copies the data and
reformats the data in certain ways. The original file remains; the reformatted copy is
placed on the default drive under the name $$$.SUB. If the default drive is A, the

127

128

Library Organization and SUBMIT

command list is executed at once. If not, the list won’t have any effect until the diskette it
is on is placed in the A-drive.

Tue CCP ReAps THE SuBmiTTED FILE. Whenever it begins work after a warm or cold
start, the CCP looks at the directory of the diskette in the A-drive to see if a file named
$$%$.SUB is listed there. If such a file exists, the CCP reads its next command from that
file instead of the terminal. Each time it reads a line from $$$.SUB, the CCP deletes the
line. Eventually $$$.SUB shrinks to nothing, is erased, and things return to normal.

The net result of SUBMIT is to cause a list of commands from a file to be executed.
Thus you can create a complicated list of commands just once by using an editor and run
it any number of times, then or later, with little effort.

SUBMIT 1o IniTiaLIZE A DiskeTTE. Let’s apply SUBMIT to the job of initializing a
new diskette. You've worked out the sequence of commands already: the formatter
command (whatever it’s called in your system), the SYSGEN command (or your
vendor’s variation), a series of PIP transfers, and two uses of STAT. Example 8-4
shows a file DISKINIT.SUB that would work in one system; it contains exactly the
commands that were issued in Example 8-3. Use an editor to prepare a similar file
(containing the right commands for your system) and call it DISKINIT.SUB. Be sure to
duplicate the dollar signs as shown in the example; we'll see why later.

Put a new, or at least an unimportant, diskette in the B-drive. Then submit
DISKINIT:

submit diskinit

After a bit of activity on the A-drive, the CCP’s prompt will appear and after it the first
command from the file. When the formatter takes over, respond to its questions as you
normally would. When it ends, the CCP will read and display the second command.
Respond to SYSGEN as usual. When it ends, the CCP will go on to work its way
through the other commands of the file.

Stop A SusmiTTED FILE witH DEL. If you want to stop the execution of a submitted
file, you can do it. Each time the CCP gets a new line from the submitted file, it checks
the terminal keyboard. If the DEL (or Delete, as it may be marked) key has been pressed,

EXAMPLE 8-4
A simple submit file to carry out the command sequence to initialize a new diskette,

Ar»type diskinit.sub

DDINIT

CCSYSGEN

PIP B:=A:STAT.COM[VR]
PIP B:=A:PIP.COM[VR]
PIP B:=A:ED.COM[VR]
STAT B:*.COM S$3R/0
STAT B:*.COM $55YS
STAT B:

Automating with SUBMIT and XSUB

the CCP erases $$$.SUB and returns to normal operations. To try this, start DISKINIT
.SUB as before. As the first command appears on the screen, press DEL (or Delete).
Although the command appears, it won't be executed. The usual CCP prompt will
follow it.

You sometimes have a fairly small window of time in which to press DEL. If a
submitted command is reading from the terminal, it will receive the DEL character, not
the CCP. In this case the window for canceling the submitted file opens following the last
input to the command, and closes when the next command is given control, often a
matter of only a couple of seconds.

SUBMIT Parameters

Not all command sequences are as stereotyped as that in Example 8-4. Some part of the
command list, usually a fileref, will vary from run to run. SUBMIT allows the command
list to contain parameters, that is, elements whose values are established when the file is
submitted.

EFrFECT OF PARAMETERS. A parameter is signaled in the file by a dollar sign followed
by a digit. The parameter values that follow the filename in the SUBMIT command
replace the parameter signals in the file. The first parameter value given in the command
line replaces every occurrence of $1 in the file. The second value from the command line
replaces every occurrence of $2, and so on up to the ninth value. A signal of $0 is
replaced by the name of the submitted file.

RuLEs FOR SUBMIT PARAMETERS. If there are parameter values in the command for
which no parameter signals appear in the file, the extra values are ignored. On the other
hand, if there are parameter signals in the file for which the command contains no values,
the unmatched parameters are simply dropped from the file: a programmer would say
that they are replaced with the null string. (Note that this paragraph may contradict your
CP/M documentation; it is based on experiment whereas the documentation apparently
was not.)

AN EXAMPLE OF PARAMETERS. Study Example 8-5. It is a submit file similar to the
one in Example 8-4. A PIP transfer has been added at the end; the name of the
destination file is formed from two parameters, $1 and $2. The first parameter value in
the SUBMIT command will replace the filename and the second will replace the
filetype. This PIP transfer will create a file whose name (with an initial hyphen) and
whose type will be established by the parameter values in the SUBMIT command.
The purpose of this version of DISKINIT is to put a label, in the form of a fileref,
into the directory of the initialized diskette. When this is done, the command DIR -*.*
will display the unique name of this diskette on the screen. Edit your version of
DISKINIT.SUB adding the last two lines of Example 8-5. Then try it:

submit diskinit project 203

129

130

Library Organization and SUBMIT

The last two lines of the file will create a file -PROJECT.203 and give it R/O status. In
this way you can label the interior of a diskette as well as its exterior jacket. Whenever
you wonder which diskette is in a drive—and such moments arise—the command dir -*.*
will tell you.

SUBMITTING A DOLLAR SIGN. Look closely at that last STAT command in Example
8-5. Think about the problem faced by SUBMIT: A dollar sign signals a parameter to be
replaced, but there are also occasions, as here, when a dollar sign is part of the
command. How can SUBMIT distinguish between a dollar sign that is part of the
submitted command and one that marks the start of a parameter signal? The solution
chosen was to require the user to double the dollar signs that did not signal a parameter.
Any single dollar sign is taken by SUBMIT as a parameter signal; a double one means it
is to leave a single dollar sign in the submitted command.

SuBMITTING A CONTROL CHARACTER. PIP and ED are often called from submitted
files. Both these commands use control characters, especially control-z, in their com-
mand operands. SUBMIT allows you to incorporate control characters in a submit file. It
uses the same convention we've been using: "Z in the file stands for control-z, and
SUBMIT will replace the “Z signal with a control-z character in the $$$.SUB file. (In
CP/M 2.2 SUBMIT contains a bug that causes it to reject an uppercase signal, but it will
accept a lowercase one like “z. See Chapter 13 where we apply the fix for this problem as
an example of using DDT.)

The XSUB Command

XSUB is a command that makes a valuable addition to the functions of SUBMIT. The
XSUB command modifies the operation of the Monitor so that lines of program input, as
well as commands, may be drawn from a submitted file. This makes it possible to
automate the use of some commands that require input from the terminal. The responses
you'd have given at the terminal can be placed right in the file.

EXAMPLE 8-5
The previous submit file, parameterized to put a label file on the new diskette. The name of
the file is formed from the first two parameter values in the SUBMIT command.

A>type diskinit.sub

DDINIT

CCSYSGEN

PIP B:=A:STAT.COM[VR]
PIP B:=A:PIP.COM[VR]
PIP B:=R:ED.COM[VR]
STAT R:*.COM S$SR/O

STAT R:*.COM $$SYS

PIP B:-$1.52=A:S3TAT.COM
STAT B:

T

Automating with SUBMIT and XSUB

AN ExampLE oF XSUB. Example 8-6 improves on Example 8-5 by supplying the
contents of the label file. In Example 8-5 the label file was a copy of STAT under another
name. In Example 8-6 we use ED to create a two-line file as the label. The two lines are
inserted using the Istring command so that ED will take them from XSUB. The first line
of the file will say THIS IS DISK..., and whatever the label is; the second line will
contain an asterisk followed by whatever other parameter values were given in the
SUBMIT command. The asterisk in the second line ensures that even if no other
parameters are given, there will be a string following the letter | to prevent ED from
going into line insert mode.

Set up your version of DISKINIT so that its last lines look like those of Example
8-6. Don’t omit the call to XSUB. Then try it:

submit diskinit backup 351 initialized 8/4/82

When the submitted file calls ED, you will see ED receiving the two |string commands
and an E command from the submitted file. When the submitted file completes its run,
use TYPE to display the label file on the new disk to verify that it looks as you expect it
to.

XSUB anp THE MONITOR. In Chapter 13 we explore the Monitor’s service requests.
For the moment you need to know that the Monitor provides two service requests for
console input: byte input and line input. When a program calls for line input the Monitor
gathers a complete line of data up to the press of the return key and returns that whole line
to the calling program. While it is collecting the line, the Monitor allows the person
entering the line to make corrections with backspace, control-x, and control-u.

The byte input service request gets the next character typed and returns it to the
calling program. Since the Monitor doesn’t see an entire line of input, it can’t attempt to
handle typing corrections. The character, whatever it was, is handed to the program that
asked for it. In general (but not always), if normal typing correction is allowed, your
input is being gathered for a line input service request.

EXAMPLE 8-6
The previous submit file, altered to create the label file by calling ED and providing its input
with XSUB.

A>type diskinit.sub

DDINIT

CCSYSGEN

PIP B:=A:STAT.COM[VR]
PIF B:=A:PIP.COM[VR]
PIP B:=A:ED.COM[VR]
STAT B:*,COM SSR/0
STAT B:*,COM $53YS
X8UB

ED -$1.52 B:

ITHIS IS DISK -S1 82
I* 32 $3 $4 $5 $6 57 S8 $9
E

STAT B:

131

132

Library Organization and SUBMIT

ProGraMs THAT Can’t Use XSUB. XSUB sets up the Monitor to answer line input
requests with a line from the submitted file. It does nothing for byte input requests, for
which the Monitor continues to come to the terminal. It is something of an adventure to
discover which commands use line input, and hence may be automated with XSUB, and
which do not. PIP uses line input to get its commands, but byte input to read from the
CON: device as a source. ED uses line input to read commands but, infuriatingly, seems
to use byte input for inserted lines even though typing correction works during an
insertion.

A ProsLEM witH SUBMIT, The SUBMIT command has a problem that further limits
XSUB. SUBMIT (in CP/M 2.2) can’t cope with a zero-length line. It does some bizarre
things if the submitted file contains one. The bug is apparently unfixable; it has been
reported more than once but no fix has appeared. As a result you can’t use SUBMIT and
XSUB to automate a program that, like PIP, requires a null line to signal “end of job.”

Uses of SUBMIT

There are two reasons for applying SUBMIT to a task. It may be a stereotyped task done
often with only minor variations. Another good reason is that it may be a lengthy task in
which many commands must be done in precisely the right order. In that case building
the script of commands and submitting it may be a good idea even if the job is to be done
only once. Because you think the task out while creating the submit file and proofread it,
you lessen the chances of making an error. Even if a task has if-then sorts of decisions
(which SUBMIT can’t accommodate), it is useful to put the usual sequence in a file.

EXAMPLE 8-7
A submit file used in a real installation to initialize work diskettes. The label file is made first

so as to be listed first by DIR. All files are R/O, some are hidden.

A>type workinit.sub

X5UB

ED -$L.52 B:

1THIS IS DISK -$l1.52

I $3 54 55 $6 §7 58 59

E

PIP B:=A:VDUMP,COM[VR]
PIP B:=A:STAT.COM[VR]
PIP B:=A:PIP.COM[VR]
PIP B:=A:EDIT.COM[VR]
PIP B:=A:SUBMIT.COM[VR]
PIP B:=A:XSUB.COM[VR]

STAT B:*_COM $SS5YS

PIP B:=A:DDT.COM[V]

PIP B:=A:DIVILL.BAS[V]

PIP B:=A:LOAD.COM[V]

PIP B:=A:MAC.COM[V]

PIP B:=A:PRINT.COM[V]

PIP B:=A:/.COM[V]

STAT B:*,* S$SR/O J ok

Automating with SUBMIT and XSUB

When the task is to be done, edit the file and alter it to fit the situation before submitting
it. The burden of remembering the steps and their sequence is left to the system, while
the creative work is left to you—an application of the slogan, “Machines should work,
people should think.”

Example 8-7 shows the contents of WORKINIT.SUB as used in the author's
system to initialize work diskettes. The formatting and SYSGEN steps are omitted
because it was more convenient to run a box of diskettes through each of those programs
by hand. Other than that, Example 8-7 is an expansion of Example 8-6. Certain very
common commands are installed on the new diskette and hidden with the SYS attribute;
a longer list of commands is moved in and left visible.

The task of making a backup copy of a project disk can be automated very well. You
might place a file named BACKUP.SUB on each project diskette. Put in it the
commands needed to copy the important files of that disk to a backup diskette. The
procedure to take a backup then is: Place the project diskette in the A-drive and a backup
diskette in the B-drive. Warm start. Enter submit backup. Remove the diskettes when
done.

133

134

Chapter 9

The

Representation of

Data

MEANING IS A HUMAN CONCEPT

BINARY DATA
Binary Units
Number Systems

REPRESENTATION OF NUMBERS
Binary Integers
Binary-Coded Decimal
Floating-Point Representation

REPRESENTATION OF CHARACTERS: ASCII
Printable Characters
Control Characters

WORKING STORAGE

135 —

135
135
135

137
137
138
138

139
141
142

145

Meaning Is a Human Concept

This chapter is for the CP/M user who has just launched into programming. In it we'll
review the fundamental ideas of computer data storage and see how those ideas are

~— applied by the language translators available for CP/M. This isn’t a book on program-
ming, and so we look into these interesting matters just deeply enough to gain an
understanding of the common practice in CP/M software.

MEANING IS A HUMAN CONCEPT

In earlier chapters we have referred to numbers and characters as if the machine could
read and understand symbols as we do. Of course that isn’t the case; the processor can
handle only patterns of bits. Everything that is to be processed by the machine must be
represented in that form.

It's important that you understand that it is we, the humans who use the system,
who attach meaning to these patterns. All bit patterns are equally meaningful—or
equally meaningless—to the hardware. It is people, and primarily programmers, who
decide that one group of bits means “A,” that another means 65, and that yet another is
the machine instruction MOV A,B. These examples are not chosen at random: all have
the same pattern of bits. Meaning is a matter of human perception and of context.

BINARY DATA
“— Binary Units

Birs. The fundamental unit of computer storage is called the bir. A bit can be
implemented using anything that will take on only one of two states: a tiny circuit on a
chip that can be charged or not charged, or a tiny spot in a magnetic coating that can be
magnetized north or south. A single bit can be made to stand for anything that has but two
values. Most commonly it stands for one digit of a binary number. In that case its states
represent the value 1 or 0.

ByTES. It is convenient for both machine designers and programmers to treat bits in
groups of eight. A group of 8 bits has come to be called a byte. The byte is a handy unit
for human comprehension. It can contain any one of 256 possible combinations of 0 and
1 bits. The combinations can be interpreted in different ways as the need arises: as small
numbers, as characters, or as instructions to the machine.

Number Systems

Most beginning texts on programming start with an introduction to the binary number

system. As a programmer you have to be familiar with it, not because you use binary

umbers in programs (for you rarely do), but because that understanding is basic to
~—understanding the machine representation of data. 135

The Representation of Data

Numser THEORY. Any number system has a base value and a set of digit symbols that
stand for the quantities from zero up to one less than the base (think of the decimal system
with its base of 10 and digits O to 9). The value of a multidigit number is formed by —
multiplying each digit by the base value raised to some power, and adding the results. If
the base is b, then the right-most digit is multiplied by b°, or 1 (any number to the zero
power is equal to 1). The next digit left is multiplied by &' (the base), the next by b?, and
SO on.

It works out that a number composed of n digits can represent any of b” different
values, including zero. For example, a three-digit decimal number can represent any of
103, or 1000, different values (000 to 999).

Binary NumBers. In a binary number the base is 2 and the only digits are O and 1. The
value of a binary number is the right-most digit—or bit—times 1, plus the next times 2,
plus the next times 4, plus the next times 8, and so on. A binary number of » digits can
represent any of 2" different values. For example, a four-digit binary number can
represent 2%, or 16, values from 0000 through 1111. A byte, which has 8 bits, can
represent any of 2* or 256 values.

HexapeciMAL NUMBERs. Hexadecimal is a number system with the base value of 16.
Hexa- is the combining form of the Greek word for six and decimal is a Latin tag for ten,

so the coined word “hexadecimal” can be read as “the 6-10 system.” The digits used in
hexadecimal are 0 through 9 with their expected values, plus the letters A, B, C, D, E,
and F standing for the quantities of 10, 11, 12, 13, 14, and 15 respectively. A two-digi
hexadecimal number can represent any of 16, or 256, different values from 00 through —
FF.

Tue Usks oF HEXADECIMAL. Hexadecimal is very useful for discussions of binary
storage. It is closely related to the binary number system. Any binary number can easily
be converted into a hexadecimal number and vice versa. A group of 4 bits can represent
any of 16 values, and so can a single hexadecimal digit. With practice it becomes
automatic to convert, say, the digit C into the bit pattern 1100, or the bits 1001 into the
digit9. Any of the 256 possible values of a byte can be noted in 2 hexadecimal digits, and
this compact notation is often used in program documentation of the more technical sort.
A 16-bit binary number, nearly impossible to write out in binary without error, is easy to
state in 4 hexadecimal digits.

There is one small drawback to hexadecimal numbers. On paper it is possible to
confuse some hexadecimal numbers with decimal numbers. In this book we always add
the suffix “h” to any hexadecimal number, like this: 40h, 01A2h.

NUMBERING THE Bits oF A ByTe. Sometimes it is necessary to talk about the
individual bits of a group. The usual convention is to number the bits of a group
according to the power of 2 that they represent in a binary number. The right-most bit,
which represents 2° (i.e., 1), is named bit 0. Its value has the least effect on the value of
the binary number, so it is also called the least significant bit. The next bit to the lef
136 represents 2' (i.e., 2) and is named bit 1; the left-most bit of a byte represents 27 (i.e.,—

Binary Data

128) and is called bit 7. Bit 7 has the most weight in the binary value of a byte, and is
called the most significant bit.

OtHER CONVENTIONs. This convention for naming the bits of a byte is not universal.
It is the one in common use in CP/M software, but some organizations (notably IBM)
chose to adopt exactly the opposite method and designated the bits from left to right. The
terms “most significant” and “least significant” are always understood, as are the
equivalent terms “high order” and “low order.”

REPRESENTATION OF NUMBERS

There are several ways to represent numbers in computer storage. Each has its advan-
tages and limitations. You need to understand them in order to make a choice among
language translators that support different methods.

Binary Integers

An integer is a whole number, one with no fractional part. Any group of bits may be
treated as an integer. A byte can be thought of as representing an integer between 00h
and FFh, or 0 to 255 in decimal. This is not enough for useful arithmetic. The next
logical step is to a 16-bit, or 2-byte, integer. A group of 16 bits can represent any of 26,

~— or 65,536, values. The processors used by CP/M have machine instructions for doing
arithmetic on 16-bit integers, making computation rapid. All CP/M programming
language translators support 16-bit integers.

UNSIGNED INTEGERS. A binary integer may be thought of as an unsigned value, one
that represents numbers beginning at 0 and running up to 65,535 (or 0000h to FFFFh).
That interpretation of an integer is used mostly at the hardware level and in systems
programs.

SIGNED INTEGERS. More commonly a 16-bit integer is interpreted as being a signed
value, containing a number from -32,768 through 0 to +32,767 (or 8000h to 7FFFh).
As stored in binary those values whose left-most bit is 1 are interpreted as negative; those
with a left-most bit of 0 are considered positive. The left-most bit is called the sign bit.

PRECISION. The precision of an integer is the number of distinct values it can repre-
sent. This is usually given as the number of digits in the largest possible value. That can
be stated in bits or, less accurately, in decimal digits. A byte has 8-bit precision, which is
Just another way of saying it can represent 2% or 256 different values. You could say it
had about 2.4 decimal digits of precision as it can represent about 10?4, or about 250
different values. If you have a pocket calculator handy, you can easily calculate the
decimal precision of a binary integer by raising 2 to the power of the number of bits in the
~— integer and taking the base-10 log of that number. 137

138

The Representation of Data

HiGHEST AND LOWEST VALUE. The precision of a number format is not the same as the
highest value that can be stored in it. Precision is a measure of the number of different
values that can be represented in that format. The 16-bit integer format can represent 2'°,
or 63,536, different values, whether it is treated as signed or unsigned. However, an
unsigned 16-bit integer can represent the numbers from zero to 65,535 whereas a signed
one can represent the numbers from -32,768 through zero to 32,767. The highest value
of a signed integer is just half that of an unsigned integer, although both can encode the
same number of distinct values.

OverrLow. The decimal precision of a 16-bit binary integer is less than five digits.
That range is wide enough for a program loop counter, or for work with simple graphics
and games, but it is not sufficient for most computation. Even the most elementary
business arithmetic involves numbers having more than five digits. If the machine is
asked to add 35,000 and 35,000, both represented as 16-bit integers, the computation
will overflow. Overflow occurs when the number of bits required to represent the result
is larger than the number of bits in the integer that receives the result. What happens then
depends on the language translator. A few of them insert code to check for overflow; the
program will stop and report an error. Most CP/M translators ignore overflow and store a
meaningless result.

Binary-Coded Decimal

A group of 4 bits can represent any of 16 values, but not all 16 combinations need be
used. If the range of values is restricted to 10, a 4-bit group can be thought of as
representing a decimal digit from 0 to 9. A byte may represent two such digits, and a
sequence of bytes may stand for a decimal integer of any precision. This representation is
called binary-coded decimal, or BCD for short.

All processors used by CP/M have machine instructions for doing arithmetic in
BCD 1 byte at a time, and so BCD arithmetic is moderately fast. BCD is convenient
because it is easy to convert between the BCD values and printable characters. The
precision of BCD numbers is up to the designers of the language translator. Language
translators that support BCD usually allow a generous number of digits.

Floating-Point Representation

THE ProBLEM OF LARGE NumBERs. Scientific applications often require numbers
with a very wide range of magnitudes, from tiny fractions to vast quantities, while
demanding little in the way of precision. For example, the distance from the earth to the
sun is about 1.5 times 10® kilometers, and Planck’s constant is 6.625 times 107*7. Such
numbers would require many BCD digits or huge binary integers to represent them, but
most of the digits in such a representation would be zero. The precision needed is small;
it is the magnitudes that are of interest. Either number could be represented in a 16-bit
binary integer if the magnitude, the power of 10 by which it is multiplied, could be
expressed separately.

—

Representation of Numbers

FroaTinG-PoiNt NumBgeRrs. That is precisely what floating-point representation
allows. A floating-point number is composed of two integers. The shorter part, usually a
single byte, contains the magnitude, the power of 10 to be multiplied with the number.
The longer part, commonly 24 bits, represents a fraction between 0 and 1 that is to be
multiplied by that magnitude. The magnitude part of a floating-point number is called its
exponent; the fraction is called the mantissa, or simply “the fraction.”

SPEED OF FLOATING-POINT ARITHMETIC. Floating-point arithmetic has two dis-
advantages. The first, and less important, is that most CP/M processors have no machine
instructions for such arithmetic. They perform floating-point computations with long
sequences of instructions. As a result the computations are fairly slow and take several
times as long as computations involving integers. Floating-point hardware units are
available for some machines, but they require support in the language translator and this
can’t always be arranged.

HAZArDS OF FLOATING PoINT. The more serious drawback of floatin g-point repre-
sentation is that it can yield inaccurate results when used in situations where it isn’t
appropriate. The precision of a 24-bit fraction is less than seven decimal digits. In other
words, the numbers 12,345.67 and 12,345.68 might be the same when encoded in
floating-point form. Such small inaccuracies accumulate over a series of computations.
For most scientific work a difference of one part in one million is not significant. Butina
commercial program where the quantity represented is money, the difference between
the two numbers is a penny and is always significant whatever the size of the numbers. A
penny’s difference in a million dollar account will keep the books from balancing. A
penny rounded the wrong way in a tax computation will bring a complaint from the
employee who gets the check.

As a general rule floating-point representation should never be used for the
calculation of money. If it is necessary to do so, then the precision of the representation
must be at least two digits greater than the most precise number to be stored, preferably
several digits greater.

REPRESENTATION OF CHARACTERS: ASCII

The 256 values that a byte takes on can be interpreted as standing for characters. Such an
interpretation is strictly arbitrary; there is no relationship between bytes and printed
letters except as people agree on one. People have agreed on a relationship between
certain byte values and certain characters. That agreement, the most widely respected
standard in the industry, was established by a committee of the American National
Standards Institute (ANSI) and is called the American Standard Code for Information
Interchange, or ASCII (the acronym has become a word in its own right, and is
pronounced “as'-key”). ASCII has been adopted with only tiny changes by the Interna-
tional Standards Organization, and is in use on all computers (barring only IBM
nachines) throughout the world. The ASCII code is shown in Figure 9-1.

139

0 o0 ' om 2 oo 3 o 4 oo 5 6 1o 7
00 10 20 30 40 50 60 10
¢ NUL DLE Space] @ P . p
0000 {0 16 P32 48 654 80 DLE |96 112 —
[} 11 21 3 41 51 61 7
i SOH Dl ! 1 A Q a q
o001 |1 A7 0|33 49 65 SOH | 81 el |97 113
02 12 22 12 42 52 62 72
2 STX DC2 " 2 B R b r
0010 |2 Bl18 R |34 50 66 STX |82 pc? | 98 114
03 13 23 33 43 53 63 73
3 ETX Des3 # 3 c S . s
0011 |3 cl19 s|3s 51 67 ETX |83 DC3 |99 115
04 14 4 34 44 54 64 T4
4 EOT DC4 5 4 D T d t
0100 |4 pf20 T|36 52 68 EOT | 84 DC4 | 100 116
05 15 25 35 45 55 65 75
5 ENQ NAK % 5 E u e u
o101 |5 E|21 |37 53 69 ENQ |85 NAK | 101 117
06 16 26 36 46 56 66 76
6 ACK SYN & 6 F Y f v
o110 |6 Fl22 v |38 54 70 ACK |86 SYN|102 118
07 17 27 3 47 57 67 7
7 BEL ETB ¥ 7 G w g w
o |7 G2 w (39 55 71 BEL |87 ETB|103 119
08 18 28 38 48 58 68 78
8 BS CAN { 8 H X h X
1000 |8 H |24 X |40 56 72 BS |BE CAN| 104 120
09 19 29 39 49 59 &9 19 |
9 HT EM) 9 1 Y i y
1001 |9 1|25 Y41 51 73 HT |89 EM|105 121
oA 1A 1A 3A 4A SA 6A TA
A LF SUB - 3] Z i z
1010 |10 I|26 z|4z 58 14 LF |90 SUB[106 122
0B 1B 28 38 4B SB 6B 18
B | vr ESC + ; K [K {
1011 |11 K|27 1|43 59 75 VT |91 ESC {107 123
0c IC o ic 4C 5C 6C c
c | FF Fs : < L \ 1 |
1100 |12 L|28 Y |44 60 76 FF|92 FSj108 124
oD 1D mn in 4D 5D 6D m
D | cr Gs - 5 M] m :]-
1101 |13 M|29 1|45 61 77 CR|93 GS|109 125
0E 1E 2E IE 4E SE 6E TE
E SO RS > N AN n s
1110 |14 N {30 ~ |46 62 78 50|94 RS[110 126
OF IF 2F IF 4F 5F 6F ¥
F SI us / 2 (6]) o DEL
1111 |15 0|31 — |47 63 79 S1|95 us|int 127

FIGURE 9-1

The ASCII code displayed. Each square shows one character with its hexadecimal value at

the upper right and its decimal value at the lower left. The first two columns contain contro’
140 characters. -

Representation of Characters: ASCII

Tue 7-Brr Cobe. Every feature of ASCII is the result of careful compromise. One
such feature is the size of the code table. It has only 128 elements from 00h to 7Fh, and
s0 can be represented in groups of 7 bits. That length was a compromise between the
6-bit codes in use when the standard was formed and the 8-bit machines then on the
horizon.

ASCIIN THE 8-Bir ByTE. Since the creation of the standard the 8-bit byte has become
normal. The standard states that an ASCII character, when stored or transmitted in an
8-bit byte, will be stored in the least significant 7 bits with the most significant bit set to
Zero.

THE PariTY Bit. When transmitted between machines, an ASCII character may have
a parity bit added in the most significant position. A parity bit is a check bit that enables
many transmission errors to be recognized and caught. The CP/M monitor assumes that
the most significant bit of any byte it receives from a terminal is a parity bit, and sets it to
zero before delivering the character to the program that requested it. When a program
asks the Monitor to transmit a byte to a terminal, the Monitor assumes that the byte is an
ASCII character, and sets the most significant bit to zero. The I/O code supplied by the
vendor may or may not set it to a parity value.

Printable Characters

THE ALpHABET. ASCII contains two complete alphabets, one of uppercase letters and
one of lowercase letters. The code was devised so that it would be easy to convert from
one to the other. Note in Figure 9-1 that the difference between an uppercase letter and its
lowercase partner is only in 1 bit. If bit 5 is set to 0, the letter is uppercase; if set to 1, it is
lowercase.

PunctuaTiON. ASCII has a rich set of punctuation and special characters, most of
which should be present on your terminal and your printer. One, whose byte value is
5Eh, can have two different printable forms. Newer terminals will render this character
as a caret or circumflex ("), but some will display it as an up-pointing arrow. Either form
is permitted by the standard. This was a compromise between the domestic U.S. code
(which used the up-arrow) and the European code (which required the circumflex as a
mark of punctuation). Some programming languages use the up-arrow as a symbol for
exponentiation. They also will accept the caret. The byte value used by the program is
the same in either case.

Non-ENGLISH PUNCTUATION. The punctuation of most languages is present in ASCII.
Items such as the tilde (~) may present difficulties, because the output device must
backspace and overstrike, and may have to index up or down. This is impossible with
display terminals and some printers.

141

142

The Representation of Data

COLLATING SEQUENCE. “A” and “a” in ASCII are two different letters with different
byte values. This is true in any computer character code, and it causes problems for
applications that involve alphabetizing. A person setting up a card index would realize
that ADAM, Adam, and adam were all the same word, and that Apple followed all three.
A computer would not; based on the values of ASCII it would sort them into the order
ADAM, Adam, Apple, and then adam. There are other things about the collating
sequence that ASCII establishes that might cause trouble: the numeric characters
precede the letters, so that *“120A Main” will collate after 1200 Main,” and some of the
punctuation is oddly scattered. The result is that you must give careful thought to the
design of records that are to be sorted.

Control Characters

THE Usi oF CoNTROL CHARACTERS. The first 32 ASCII codes (00h through 1Fh)
and the last (7Fh) are control characters. These have no printable shape; they are used to
regulate the transmission of data between two devices. A number of the characters are
useful only for teleprocessing (sending data between computers over telephone lines),
but several serve useful functions within a system.

RELATION TO PRINTABLE CHARACTERS. Each control character is paired with a
printable character by a 1-bit change. If bit 6 of a byte containing a control character is set
to 1, a printable character results. This was done so that it would be easy for designers to
provide a control shift key on keyboards. The relation is clear in Figure 9-1. To find the
letter linked to a control code, look four columns to the right in the table. All CP/M
terminals have a control shift key (we used it often in the exercises of Chapter 5). The
control key links each control character to a normal key button. Control-a thus transmits
01h. the character named SOH, and control-underscore transmits 1Fh, the character
US.

Most programming languages provide some way to specify the control characters
within a program. BASIC, for instance, has the CHR$ function.

ForMaT EFFECTORS. Seven of the control characters are defined as format effectors—
characters that control the format, rather than the content, of the data. The seven are
listed in Table 9-1. You should verify which of these characters are supported by your
terminal and printer. Your printer may not respond to a backspace (BS) but should
support the formfeed (FF); your terminal probably does just the opposite.

CR anp LF v CP/M FiLes. The carriage return (CR) and linefeed (LF) characters are
important in CP/M. A pair of bytes CR, LF is used to end each record of a file of ASCII
text. Neither CR nor LF alone represents a record boundary, but CR and LF, adjacent
and in that order, do.

Device ConTtroLS. Thirteen of the ASCII control codes are miscellaneous device
controls. These are summarized in Table 9-2. When received by any terminal (and some

Representation of Characters: ASCII

TABLE 9-1
The ASCII format effectors, control characters defined to control the format of data rather
"~ than its content.

L ==
Character Value as Control Meaning and Use
Name Dec. Hex. Shift

CR 13 0Dh M Carriage return—return print head
or cursor to left margin.

LF 10 0Ah J Linefeed—move print head or cur-
sor down one line with respect to the
paper or screen display.

BS 8 08h H Backspace—move print head or cur-
sor left one character position.

HT 9 0Sh I Horizontal tab—move print head or
cursor right to the next defined tab
stop. CPM assumes tab stops are set
at every eighth position, e.g., 9, 17,
25.

FF 12 0Ch L Formfeed—move print head to top

of next sheet of paper. Some termin-
als will clear the screen and others
will ignore the formfeed.

~— VT 11 0Bh K Vertical tab—move print head down
to the next vertical tab stop.

printers), BEL will cause a beep or chime to sound. The cancel (CAN) character is used
by the Console Command Processor as a signal to clear its input line and start over:
you’ve used it often as control-x. CAN would be a logical choice if you needed a special
character to mark a deleted record in a file.

SUB v CP/M FiLes. The designers of CP/M chose the substitute (SUB) character to
mark the end of a file of ASCII text, and to mark the end of strings in the command
languages of PIP and ED. They may have been attracted to it by the mnemonic value of
using control-z to signal “the end,” but it is curious that they didn’t make the more logical
choice of the end-of-medium (EM) control character. EM is the character that the
standard has set aside to mark the end of active data on some med ium, which is precisely
the purpose for which CP/M uses SUB. At any rate you must be careful never to write a
SUB code as part of a file of ASCII text as CP/M commands won’t read past it; any data
that follow will be unreachable. The exception is PIP; it will read past a SUB if given its
O option.

ESC anp EscAPE SEQUENCES. The escape (ESC) character is important. It signals that
one or more characters following it are to be interpreted in some special way. ASCII
" devices with special features usually rely on sequences beginning with ESC to control 143

144

TABLE 9-2

ASCII device control characters provide a variety of useful functions. Unfortunately their
use by equipment designers has not always been consistent or in the spirit of the standard.

Character

Name

Value as

Dec.

Hex.

Control

Shift

Meaning and Use

NUL

BEL
SO

SI

DCl1

DC2

DC3

DC4

CAN

SUB

ESC

DEL

0

15

17

18

19

20

24

25

26

27

127

00h

07h

OEh

OFh

11h

12h

13h

14h

18h

19h

1Ah

1Bh

7Fh

(none)

(none)

Null—used to fill time between data
transmissions; has no information
content.

Bell—sounds an audible alarm.
Shift out—change to an alternate
font of printable characters.

Shift in—return to standard print-
able characters. SO and SI are the
logical choices to control screen
graphics, but no terminal maker
uses them so.

Device control 1—once called XON
for transmit on, used to start a unit of
a remote device. Some printers emit
DC1 when they are ready to receive
data.

Device control 2—used to start a
unit of a remote device.

Device control 3—once called
XOFF for transmit off, used to stop
a unit of a remote device. Some
printers emit DC3 when their buf-
fers are nearly full.

Device control 4—used to stop a
unit of a remote device.
Cancel—the data accompanying
this character are to be disregarded.
Logical choice to mark a deleted re-
cord.

End of medium—meant to mark the
end of active data on a tape or other
medium.

Substitute—replaces a character
known to have been garbled in trans-
mission. CPM uses SUB to mark
end of file.

Escape—marks the following one to
four characters as special controls.
Delete—once called rubout; like
null, has no information content. On
paper tape a character can be erased
by punching all its holes, resulting
in DEL.

Working Storage

those special features. For example, some terminals will accept an escape sequence that
directs them to move the cursor to a particular spot on the screen. An attempt has been
made by ANSI to standardize the design of escape sequences, with little effect. You will
find that your terminal’s repertoire of special features is controlled by escape sequences
different from those used by terminals from other makers.

WORKING STORAGE

The computer’s primary storage medium is working storage. It is composed of a large
array of integrated circuits, each holding a collection of bits. The array is organized into
bytes and each byte can be accessed individually by the processor. The bytes are just
bytes to the hardware; it is CP/M and the programmer that impose structure and meaning
on them.

SPEED OF WORKING STORAGE. Working storage responds to access requests very
quickly. Such speed is essential because all of the instructions and all the data that they
act on are held in working storage. If the processor is to keep running at its rated speed,
working storage has to deliver data at very high speed.

AppREsses. Working storage is organized as an array of 8-bit bytes. Each byte is
numbered. The number is called its address—it serves the same function as a street
address on a house. The first byte in working storage is numbered 0, the next 1, and so on
to the limit of the machine.

Appress Notation. In CP/M machines addresses are given as 16-bit integers,
interpreted as numbers in the range of 0...65,535. A 16-bit integer can be represented as
4 hexadecimal digits, and that is how we’ll name specific addresses from now on. Once
you are accustomed to it, addresses make better sense in hexadecimal than in decimal as
the powers of 2 into which storage naturally divides come out as more suggestive
numbers in hexadecimal. For example, the last byte available in a machine with the
maximum amount of storage has the address FFFFh, aclearer indication that it is the last
than the decimal number 65,535,

Processor INput. In order to read working storage, the processor emits the bit
pattern of an address on a set of address lines. The circuits of working storage decode the
address to select one of all the bytes they hold, and emit the bit pattern held in that byte on
aset of data lines. The processor accepts the bit pattern and proceeds with its operations.

Processor Output. In order to write into working storage, the processor emits both
an address value and the data value, and also sets a circuit to indicate that it is writing.
The working storage circuitry decodes the address, accepts the bit pattern of the data,
and impresses it upon that byte, thus replacing whatever was there. Either process can be
accomplished in less than half a microsecond.

145

146

The Representation of Data

ProcEssOR INDIFFERENCE TO MEANING. To the hardware, all bytes of working
storage are alike. The processor is as willing to fetch an operation code from location
0000h as it is to write a character into the byte at FFFFh. Any location may contain any
bit pattern, and the processor is willing to interpret the bits in a location in any way the
programmer instructs it to: as a character, as part of a number, or as an instruction.

Chapter 10

The File System

CONTROL OF THE DISKS
Physical Organization

DISK ORGANIZATION
The STAT DSK: Display
Reserved Tracks and Data Tracks
The File Directory
Allocation Blocks
Directory Entries and Extents
File Allocation
The STAT File Report

SEQUENTIAL FILE ACCESS
Creating the File
Weriting to the File
Completing the File
Reading the File

DIRECT FILE ACCESS
Input with Direct Access
Output with Direct Access
STAT and Direct Access

TYPES OF FILES
ASCII Files
Binary Files

148
148

149
149
150
150
150
151
152
153

154
154
154
156
156

157
158
158
158

159
159
160

147

148

The File System

In this chapter we examine the file system as it is used by a programmer working in a
high-level language such as BASIC or Pascal. We will expose the workings of the
Monitor in enough detail to enable you to make sense of the STAT command’s displays.
Then we’ll observe the operation of the system as a BASIC program writes a file and
reads it back. We discuss the file system in more detail in Chapter 13.

CONTROL OF THE DISKS

A disk is organized at three levels. There is the physical organization of tracks and
sectors, which is managed by code supplied by the vendor of the system. On this, CP/M
builds an organization of files composed of extents, allocation blocks, and records. The
programmer, working through a programming language, imposes his or her view of the
stored data on that structure.

Physical Organization

PuysicaL Units. In Chapter 2 we described how a diskette or rigid disk is divided into
tracks by the stepping motion of the access arm, and the tracks into sectors by the drive
electronics. The number of tracks, the number of sectors per track, and the size of a
sector are all matters that vary with the type of drive and the way the disk is formatted. It
is possible to have several different disk configurations active at once. The A-drive
might have a double-density, 8-inch diskette with eight 1024-byte sectors on each of its
77 tracks whereas the B-drive might have a single-density diskette with twenty-six
128-byte sectors per track. Yet another drive might be a portion of a hard disk with still
other dimensions.

Tue BIOS anp THE BDOS. This variety is controlled and managed by a part of the
Monitor known as the Basic I/0 System, or BIOS. This is the part of the Monitor that is
written by the system’s vendor. Its primary function is to move data to and from /O
devices, especially the disks, at the command of the standard part of the Monitor (which
is called the Basic Disk Operating System, or BDOS). We'll have a lot more to say about
the BDOS and BIOS in later chapters.

Roik oF THE BIOS. The BIOS is the only part of the Monitor that is aware of the
physical organization of the disks. The BIOS manages the disk interface circuits,
commanding the access arm to move from track to track and ordering sectors to be read
or written. The Monitor makes requests of the BIOS in terms of records of a standard
size, 128 bytes. The record might be a sector or only part of a sector. In the latter case the
BIOS must read a complete physical sector (disks only read and write complete sectors)
and then pass the right 128-byte portion of it to the Monitor.

Disk Organization

RoLE oF THE BDOS. The BDOS, the standard part of the Monitor, views all disks as
having some number of tracks, each of which contains 128-byte records. CP/M 1.4 only
supports disks whose sectors are 128 bytes in length, and so the Monitor’s records
corresponded exactly to sectors. With version 2.0 of CP/M that relationship was broken.
CP/M continues to view all disks as being laid out in 128-byte records, but it relies on the
BIOS to relate those standard records to the physical layout of the disk. The BDOS learns
such things about a disk as how many tracks it has, or how many standard records fit on a
track, by asking the BIOS.

DISK ORGANIZATION

The STAT DSK: Display

The STAT command will display what the BDOS knows about any disk. The form of
STAT for that display is

STAT drivecode:DSK:

Example 10-1 shows two typical displays for 8-inch diskettes that were formatted just
before the displays were made.

Reserved Tracks and Data Tracks

REeSERVED TraCKks. The last line of the STAT display gives the number of reserved
tracks. Some of the lower numbered (outermost) tracks of a disk are reserved and do not

EXAMPLE 10-1
The STAT disk information display shows everything that the BDOS knows about a disk.
The BIOS supplies the information.

A>; with single-density diskette... A>; with double-density diskette...
A>stat b:dsk: A>stat b:dsk:

B: Drive Characteristics B: Drive Characteristics
1944: 128 Byte Record Capacity 4800: 128 Byte Record Capacity
243: Kilobyte Drive Capacity 600: Kilobyte Drive Capacity

64: 32 Byte Directory Entries 128: 32 Byte Directory Entries
64: Checked Directory Entries 128: Checked Directory Entries
128: Records/ Extent 128: Records/ Extent
8: Records/ Block 16: Records/ Block
26: Sectors/ Track 64: Sectors/ Track
2: Reserved Tracks 2: Reserved Tracks
A»stat b: A>stat b:
Bytes Remaining on B: 241k Bytes Remaining on B: 596k

149

150

The File System

contain data. These are the tracks that contain the image of the Monitor and CCP that is
loaded on a warm or cold start. There are usually two reserved tracks. On a 5-inch
diskette it may require three tracks to hold the Monitor image. On a rigid disk the number
of reserved tracks may be very large; we'll see the reason for that in Chapter 14.

Data Tracks. The remaining tracks on a disk are used for data, except for a section
that is reserved for the file directory. The STAT display does not show the count of data
tracks directly. Its first line gives the total number of standard records that the drive will
hold, and the next to last line gives the number of standard records (confusingly, and
incorrectly, reported as “sectors™) on each data track. Divide the number of records per
track into the total number of records to obtain the number of data tracks.

The File Directory

The file directory is a table of all the files on a disk. The directory contains the name and
type of each file and a record of where on the disk each file’s data are kept.

Directory Size. The first records of the first (outermost) data track are used by the
Monitor to contain the file directory. The size of the directory is a vendor option,
reported to the Monitor by the BIOS. The directory size is displayed by STAT in the
third line of the display. Each directory entry is 32 bytes long, and the display gives the
directory size in terms of entries. Divide by four to learn how many 128-byte standard
records are allocated to the directory. Subtract that number from the count of all records
in the first line of the display to discover how many of the disk’s records are available for
data.

A Disk Space Discrepancy. We can now explain one seeming discrepancy in the
STAT displays in Example 10-1. The disks were newly formatted and all records should
have been available. Yet the disk information display reports a different capacity in
kilobytes than the normal STAT display does. The disk information display reports drive
capacity as 128 bytes times the total count of standard records. The normal STAT
display reports the available data space, which is the total less the records allocated to the
directory, When a disk is freshly formatted, the difference between the two quantities is
the size of the directory in bytes.

Allocation Blocks

CP/M allocates file space in allocation blocks, each containing some number of standard
records. An allocation block is the smallest unit of space that CP/M can allocate to a file.

e

Disk Organization

Regardless of its exact size, a file will always have reserved to it some number of
allocation blocks. The records contained in a block are adjacent to each other on the disk.

ALLOCATION BLocK Size. The third from last line of the disk information display
shows the number of records included in each allocation block. The first information
display in Example 10-1 shows that there are 16 records (i.e., 16128 = 2048 bytes) in
each allocation block. On such a disk 16 records is the smallest allocation unit. Files
from 1 byte to 2048 bytes in length will have one block of 16 records allocated to them.
Files containing from 2049 to 4096 bytes will have two blocks, or 32 records, allocated
to them, and so forth. The disk described by the second report in Example 10-1 uses eight
records, or 1024 bytes, per allocation block.

A PuzziLe FrOM CHAPTER 5. The fact that CP/M allocates space in blocks of several
records explains a small puzzle left unexplained in Chapter 5. There we used PIP to
create T9.FIL by concatenating three smaller files. According to STAT, each small file
occupied 2 KB, but their concatenation occupied only 4 KB. Now it should be clear that
the small files were considerably less than 2K bytes each, but each had received an
allocation of 2K bytes regardless. The concatenation of their data added to just over 2K
bytes and so received two allocation blocks totaling 4K.

USE oF ALLOCATION BLOCK S1zE. It is useful to know the size of an allocation block.
You need never estimate the expected size of a file more closely than to the nearest
block. There’s no point in trying to economize on file space unless the file in question is
larger than one allocation block, and unless the economy to be applied will result in
savings greater than one block.

Directory Entries and Extents

Directory Use INCP/M 1.4. Each entry in the directory can describe a fixed number
of allocation blocks. In earlier versions of CP/M the allocation block size was always
eight records or 1024 bytes, and a directory entry could describe 16 such blocks.
Therefore, a directory entry could describe 16K bytes of space. That amount of space
was called an exrent, and everyone assumed that “extent” meant “the amount of space
described by one directory entry, which is 16K bytes.”

DirecTory Use iIn CP/M 2. Version 2 of CP/M extended the file system so that
vendors could specify larger allocation blocks. This improved the system’s performance
and made it possible to use disks of greater capacity. It also complicated the terminology
of the file system. With current versions of CP/M (and MP/M) a single directory entry
might describe as much as 256K bytes of space. That would be an unusual case, but it is
common for disks to be configured so that one directory entry describes 32K or 64K
bytes.

151

152

The File System

LoGICAL AND PaYSICAL EXTENTS. What, then, does the word “extent” mean? Is it the
amount of space controlled by one directory entry? Or does it mean 16K bytes of space
(in which case a single directory entry might describe several “extents”)? The CP/M
documentation uses the term in both ways. We will use the term logical extent when we
mean a unit of 16K bytes of data. The unqualified term extent will refer to the amount of
space that can be described by one directory entry on a particular disk. That will be some
multiple of a logical extent (some multiple of 16K bytes), depending on the size of an
allocation block.

Locicar ExTents From STAT DSK:. To discover the number of logical extents per
directory entry, refer to the STAT disk information display. It shows the number of
“records/extent,” and in that line, the word “extent” refers to the space described by one
directory entry. Divide the number of records shown by 128 (the number of records in
16K of data) to find out how many logical extents a directory entry contains. In both
displays in Example 10-1 there are 128 records in an extent, so for those disks a logical
extent is equal to a physical one.

FiLEs LARGER THAN ONE EXTENT. A directory entry can describe only a limited
amount of space—usually 16K bytes and never more than 256K bytes. CP/M allows
files to be as large as 8M bytes (8 megabytes). Files of that size can’t possibly be
described by a single entry in the disk directory.

A file that exceeds the size described by one directory entry has more directory
entries allocated to it. A file may have many directory entries, each describing part of the
space it occupies. Indeed, if there is only one file on a disk and it fills the disk, then all of
the entries in the disk directory are needed to describe that file.

File Allocation

Once you've swallowed that lump of background information, you’ll find it easy to
understand how CP/M allocates space to files. When data are first put into a file, the
Monitor selects an unused directory entry and initializes it. Then it chooses an unused
allocation block and records it in the directory entry. The records of that block now
belong to the file. As the program produces data, the data are stored in the records of that
block. When all the records of the block have been filled, the Monitor selects another
block to be recorded in the directory and filled. If a file grows until it has filled all the
blocks that can be recorded in an extent, then another directory entry is chosen and the
process continues.

In later chapters we examine how the Monitor keeps track of used and unused
blocks and directory entries, and how the entries that represent successive extents of a
file are linked together. For the purpose of writing application programs, it is enough to
know how to decode STAT 's disk information display, and to understand the three units
controlled by the Monitor: standard 128-byte records, allocation blocks, and extents,

Disk Organization
The STAT File Report

Example 10-2 shows the display produced by the stat fileref command. In Chapter 5 we
sidestepped the job of explaining all the columns, but now that you understand file
allocation you can decode them.

NUMBER OF RECORDS IN A FILE. The first column, headed “Recs,” is the count of
standard 128-byte records that actually contain data for the file. It does not include
records that have been allocated as part of a block but not yet used. This is the nearest
approximation to the true size of the file that you can get from STAT. The file size in
bytes is 128 times the count of records in it. That might be exactly right, or it might be off
by as much as 127 bytes.

SPACE ALLOCATED TO A FILE. The second column, headed “Bytes,” is a count of the
total amount of space allocated to the file; that is, it is the size of an allocation block times
the number of blocks that have been allocated. This is not exactly the size of the
file—that is better described by the “Recs” column—but it does describe the amount of
disk space that this file controls, the amount that would be made available if the file were
erased.

LocicaL ExTents INA FILE. You might guess that the third column, headed “Ext,” is
a count of the number of extents—that is, directory entries—controlled by the file. In
most cases you would be right. This column is a count of the 16-KB logical extents
owned by the file. To determine the number of physical extents, and hence directory

EXAMPLE 10-2

The STAT file display: Recs are 128-byte standard records, Bytes is the space allocated to
the file, Ext is the number of 16 KB logical extents and usually the number of directory
entries.

A>stat *,.com

Recs Bytes Ext Acc

38 6k L R/W A:DDT.COM
5 2k 1 R/W A:DUMP.COM
52 8k L R/W A:ED.COM
a3 L4k 1 R/W A:EDIT.COM
14 2k 1 R/W A:LOAD.COM
a2 12k L R/W A:MAC.COM
190 24k 2 R/W A:MBASIC.COM
58 gk 1L R/W A:PIP,COM
142 L8k 2 R/W A:PRINT.COM
41 Gk L R/W A:STAT.COM
L0 2k 1 R/W A:SUBMIT.COM
6 2k Il R/W A:XS5UB.COM

A>_

153

154

The File System

entries, used by the file, you must divide by the number of logical extents described by
each directory entry.

SEQUENTIAL FILE ACCESS

Let’s study the operations of the Monitor as a file is written and then read again. Let’s
assume that you’ve written a program that will acquire data from some source and write
the data into a new file, one that doesn’t yet exist. Afterward the program will read the
file back and display it at the terminal. Figure 10-1 shows a simple BASIC program that
will do just that.

Creating the File

OPENING THE FILE. The program begins by opening the file. Anywhere in data
processing, to open a file is to locate the file and prepare it for access. Most programming
languages provide a statement that opens a file, usually with provision for the name of
the file and an indication of whether the program will be reading (in which case the file
must already exist) or writing (in which case it shouldn’t exist).

ERrASING AN ExisTING FILE. Here we are opening the file for output, and these actions
will ensue. First the Monitor will be asked to see if the file exists. If it does, then the
Monitor will be requested to erase the file, because it will be replaced. (Some languages
leave it up to the programmer to check for an existing file of the same name and erase it.)

THE INITIAL DIRECTORY ENTRY. Once the file is known not to exist, the Monitor is
asked to create an initial directory entry for the file. This service request locates an
unused directory entry and initializes it with the name of the file. The entry will not show
any space allocation. As far as the Monitor is concerned the file has zero length.

Usk oF THE FiLE ConTrOL BLOCK. A copy of the directory entry, called the File
Control Block (FCB), is kept by the program and passed as an operand of all subsequent
service requests. This copy of a directory entry reflects the true state of the file; it
contains the current allocation information as the file grows. The directory entry on disk
will not change; it will continue to indicate that the file has zero length for some time. If
the program halts or is canceled (by control-c or reset) before the directory on disk is
updated, the file will have zero length as far as anyone can tell.

Writing to the File

DATA RECORDS AND STANDARD RECORDS. It’s important to realize that the standard
records written by the Monitor bear no relation at all to what the programmer knows as a
record. As a programmer you should think in terms of the units of data that are natural to

Sequential File Access

1000 REM A simple program to create a file. The syntax
1100 REM is correct for Microsoft Basic; small changes are
1200 REM needed for other translators.

= 1300 REM
1400 REM L. Establish the on-error routine
1500 REM
1600 ON ERROR GOTO 5100
1700 REM
1800 REM 2. Open the file for output
1900 REM
2000 OPEN "O",#1,"TEST.FIL"
2100 REM
2200 REM 3. Ask the operator how many records to write
2300 REM
2400 INPUT "How many records"; NREC
2500 REM
2600 REM 4. Write NREC records all of the form:
2700 REM This is TEST.FIL line..., (number)
2800 REM
2900 THIS$ = "This is TEST.FIL line...,"
3000 REM
3100 FOR J = 1 TO NREC
3200 PRINT#1, THISS;J
3300 NEXT J
3400 REM
3500 REM 5. Close the file and open it again for input
3600 REM
3700 CLOSE#1
3800 OPEN "I",4l,"TEST.FIL"
3900 REM
4000 REM 6. Read back all NREC lines and type them
4100 REM
4200 FOR J = 1 TO NREC
4300 INPUT#1,THISS K
4400 PRINT THISS,K

— 4500 NEXT J
4600 REM
4700 END
4800 REM
4900 REM ** error trapping routine == just display the number
5000 REM
5100 PRINT
5200 PRINT "Trapped on error ";ERR;"..."
5300 BRINT " in line ";ERL;", doing record ";J
5400 PRINT
5500 END

FIGURE 10-1

A simple program in BASIC illustrates one language translator’s method of bringing CP/M
file operations to the programmer.

the problem you are solving. For example, you might be writing a record that consists of
a name, a street address, a city, a state, and a zip code. As represented by the
programming language, those items might add up to 66 bytes, or 102, or any other
number. That is the data record size and the only unit of data worth your attention. It is
the job of the language translator to collect those units into 128-byte records, and the job
of the Monitor to store the records on disk. Only when you use assembly language does
the burden of handling both kinds of records fall on you.

COLLECTING A STANDARD RECORD. The program begins to generate data and specify
that the data be written to the file. (In BASIC this is done with a PRINT# statement.)
"~ The Monitor has a write service request, but it accepts only units of 128 bytes of data. 155

156

The File System

The language translator (or the programmer, in assembly language) must provide the
code to collect data until exactly 128 bytes are ready. Then a service request is made to
write that 128-byte standard record to the file.

ALLOCATING SPACE. The first time this service request is made, the Monitor will see
from the FCB that no space has been allocated to the file. It will select an unused
allocation block, record it in the FCB, then write the data to disk in the first record
controlled by that allocation block. Subsequent write requests cause the Monitor to write
in the following records of that block until the block is filled; then another block is
allocated. The block numbers and the count of records written to the latest block are
recorded in the FCB. The Monitor keeps no information about the file; everything that is
known about the file is recorded in the FCB, which is in the keeping of the program.

ALLOCATING EXTENTS. As writing continues the FCB will become filled with block
numbers. When the last record of the last block is written, the Monitor will copy the FCB
into the directory on disk. That makes the allocation done in the first extent permanent. If
the program is canceled after this point, the file will appear to have exactly one extent of
data.

After updating the directory the Monitor, assuming that more data are to come,
finds and initializes another directory entry, and initializes the FCB in the program to
show that the current extent is empty. Writing may continue in this way, record by
record, block by block, and extent by extent as needed.

Completing the File

CrosinG THE FILE. Anywhere in data processing to close a file is to complete the last
access to it, make it permanent, and release it. Most programming languages provide an
explicit close request; some close all files automatically at the end of the run. The
Monitor provides a close service request.

WRrITING THE LAST RECORD. The language translator buffers data in 128-byte re-
cords. When the program calls for the file to be closed, there may be a partial record left.
That has to be written with a write service request. Then the program asks the Monitor to
close the file. The Monitor copies the FCB into the directory on disk, and all the
allocation information becomes permanent.

Reading the File

OPENING THE FILE FOR INPUT. In order to read a file it must be opened. The Monitor is
asked to find the file and copy its directory entry into an FCB. There is a count in the FCB
of the number of records that have been read; this is set to zero.

Sequential File Access

READING A DATA RECORD. The program contains a request for a data record (an
INPUT# statement in BASIC). When this is executed, the program calls on the Monitor
to provide the next 128-byte standard record. The Monitor reads the record from disk and
copies it to a buffer supplied by the program. The FCB is updated to indicate that one
record has been read.

DaTA RECORDS VERSUS STANDARD RECORDS. The data record needed by the program
probably will not be exactly 128 bytes long. It may be completely contained in a standard
record, with data left over. In that case the following data must be saved and used to
satisfy the next input command. The data record might span two or more standard
records, in which case more records have to be read until the complete data record has
been provided.

SUCCEEDING EXTENTS. When the last standard record of an extent has been read, the
Monitor searches the disk directory for the directory record of the next extent. A copy of
that extent entry is placed in the FCB, and reading continues.

CrosiNG ANINpUT FILE. Under CP/M it is not necessary to close an input file. There is
no need to update the disk directory after input. Some operating systems hold informa-
tion on active files outside the program space and so need a close call as a signal that the
operating system may clean up its tables. That is not the case with CP/M: all information
on the state of the file is in the FCB, which is held by the program.

It is still a good idea to close input files. There are two reasons for this. First, the
code generated by the language translator may benefit from knowing that a file is not in
use. It may have buffer space or tables that it can release. The second reason is that
MP/M does keep track of open files. When you open a file under MP/M 1, the operating
system notes that that disk is active. Until you close the file, MP/M will not allow the
system operator to change that disk. MP/M 2 keeps track of each open file so that it can
protect one program’s files from the actions of other programs.

DIRECT FILE ACCESS

The common way to access a file is sequentially, from first record to last. CP/M offers a
second way to access a file: direct access to any standard record in the file. Direct access
is useful for many applications and absolutely essential for a few. With it you can
retrieve any records you want, in any sequence.

DirecT Access INCP/M 1.4, True direct access was added to CP/M with release 2.0.
A limited form of it was available in earlier versions. Most of the language translators for
CP/M were written for earlier releases of the system and not all of them have been
updated to take advantage of direct access. Such packages will limit the size of a directly
accessed file to 256K bytes and may not be able to handle direct access on double-density
disks.

157

158

The File System
Input with Direct Access

Reading a file with direct access is slightly more complicated than reading one sequen-
tially. The language will require a different form of input command. In it you will be
asked to provide a record number.

Data RECORDS VERSUS STANDARD RECORDS. Usually the language will require all
data records in a direct file to be of the same length—so that the number of the standard
record that is wanted can be computed by multiplying the length of one data record by its
record number, and then dividing by 128. The result is the number of the standard record
in the file in which the data record lies (or at least the one in which it begins).

READING A STANDARD RECORD. With that information the program can call on the
Monitor for a direct read of that standard record. If the record lies in a different extent
than the one in use, the Monitor will have to search the directory to find the entry that
describes the extent that is needed. Then it can find out which block contains the record
and so learn where on the disk that record lies.

Output with Direct Access

AvrrocatioN wiTH DirRect Access. File allocation works differently when a file is
created with direct access. The Monitor allocates blocks and extents as you write to -
them. You need not write every record. If you skip over an extent’s worth of records, the
space will not be allocated. If you skip over a block’s worth, the block will not be
allocated.

FiLes with HoLgs. It is possible with direct access to create a file that has holes (large
areas of undefined space) in it. If such a file is read sequentially, the Monitor will report
end of file when it reaches the first hole. All the data following the first hole will be
unreachable for sequential reading. If the file is read with direct access and a nonexistent
record is requested, the Monitor returns an error code to the program. What the program
does then depends on the rules of that particular programming language. One way to
avoid both problems is always to create files sequentially and use direct access only for
retrieval and update.

STAT and Direct Access

When a file contains holes, the numbers displayed by the stat fileref command have little
meaning. The stat fileref command has an optional operand $S, which causes it to
display, in addition to the usual numbers, the so-called virtual size of the file. That is the
size the file would have if it had no holes. A file with holes will show a difference
between its virtual number of records and the number in the Recs column.

Types of Files
TYPES OF FILES

As CP/M sees it, there is just one kind of file: a series of standard records, allocated in
blocks, described by directory entries. From another point of view, there are two types of
files: ASCII files and binary files. From still another point of view there are many
conventional file types, each with its own rules.

ASCII Files

A file that contains ASCII text may be edited from the terminal with ED or another editor
program. A file of ASCII text can be written directly to the terminal or printer with
TYPE, PIP, or any other program; all the bytes it contains are valid characters that such
devices can handle in a predictable way.

Logicar Enp oF FiLe: SUB. As we noted previously, the data records in a file may
have any length. Therefore, the last data record in the file might not end with the 128th
byte of the last standard record of the file: its last byte could even be the first byte of the
last record, with 127 undefined bytes of garbage following it. SUB is the agreed-upon
signal for the end of a file of ASCII text. It is conventional in CP/M to fill the unused
bytes of the last record of a file with SUB characters (1Ah, control-z). The input routines
of most language translators will check for SUB as they move data from the record buffer
into the program’s variables during an input operation. When SUB appears, the lan-
guage will report end-of-file status according to its conventions.

PHysicAL ENp oF FILE. The Monitor will report end of file when a program requests
the next record and there is no next record (either because there are no more records, or
because there is a hole in a file created with direct access). This is called physical end of
file, as opposed to the appearance of SUB which is a logical end of file. In the event that
the last data record exactly fills the last standard record, physical end of file will occur
before a SUB is seen.

ASCII Lines. It is also a CP/M convention that the data records of an ASCII file are
treated as lines. A line is a sequence of characters that ends with a carriage return and a
linefeed (or CR, LF as we'll say from now on). The appearance of a pair of characters
CR, LF is the agreed signal for end of record. A line need not be restricted to the width of
a terminal screen or a printer line; it may be any length at all,

Enp oF LiNe: CR, LF. Most languages that write data in ASCII will insert CR, LF
after each unit of output. BASIC, for instance, inserts CR, LF fol lowing the data written
with a PRINT# statement unless the programmer requests it not to. All editors insert
CR, LF to mark the boundary of a line, but different editors define “line” in different
ways. If you intend your program to read files created by your editor, you should check
the editor’s documentation; it and the programming language may place different limits
on the maximum length of a line.

159

160

The File System
Binary Files

Binary files are defined by negatives. They do not contain only ASCII characters, their
record boundaries are not marked by CR, LF, and in them the appearance of SUB does
not signal end of file. .COM files are binary files; they contain machine-language
instructions among which any byte value whatsoever may appear. You may type or print
a .COM file, but the results will be peculiar and not useful. Files of intermediate code
(.INT) and relocatable program files (.REL) are also binary files.

It is possible to create data files that contain other than ASCII bytes. Many
programming languages write data items in their ASCII representation as the normal
mode of output. If BASIC is used to write a number into a file, the PRINT# statement
will convert the number from its binary representation into ASCII numeric characters.
Thus a file written from a BASIC program will normally be an ASCII file. However,
most languages allow the programmer to write numbers in their binary or BCD repre-
sentation. When this is done, the file is a binary one; it will contain bytes that are not
meaningful as ASCIIL. Depending on the conventions of the language, such a file may or
may not have its records delimited by CR, LF and may or may not have a SUB as an
end-of-file mark.

Chapter 11

Language

Translators

LANGUAGES AS TOOLS

INTERPRETERS VERSUS COMPILERS
Using an Interpreter
Using a Compiler
Partial Compilers
Matched Translators

THE REPRESENTATION OF PROGRAMS
JUDGING A LANGUAGE

TRANSLATOR CASE STUDIES
tiny ¢
Microsoft Disk BASIC 5.0
CBASIC
Pascal/Z
Digital Research PL/I

162

162
162
163
164
164

164
166

167
167
168
169
170
170

161

Language Translators

A language translator—a compiler or interpreter for a programming language—is your
primary programming tool. A translator is a complicated, expensive piece of software,
and there are dozens of them on the market. In this chapter we talk about the kinds of
translators available for CP/M and how to choose among them.

LANGUAGES AS TOOLS

If you've ever worked with your hands, you know how important it is to have the right
tool for a job. A task as simple as loosening a screw can be maddeningly difficult if you
don’t have a screwdriver of the right size. When the corners of the screwdriver blade
have been rounded, the screwhead chewed up, and the screw is still firmly set in the
wood, you have no one to blame but yourself. A programming language is a tool, and the
same principle applies. Having the right tool makes hard jobs easy; using the wrong one
can make simple jobs impossible.

THE VARIETY OF TRANSLATORS. There are at least six major programming languages
available for CP/M—a “major” language being one that is both widely used and
available as a well-supported software package—from at least eight different vendors. In
addition, there are at least a dozen less common languages from a variety of smaller
sources. Each language gives you a different way of stating the solution to problems, a

way that may fit well to the problem at hand, or may not. Each implementation of each
language presents you with a different set of CP/M facilities and a different way of —
invoking them.

If you are still learning to program, or are doing it for enjoyment, then use whatever
language is readily and cheaply available. If you are programming professionally—and
you are doing that when the application has to do with your work, whether you’re paid
specifically for programming or not—then you should examine languages and the
packages they come in as critically as you'd examine any professional tool.

INTERPRETERS VERSUS COMPILERS
Using an Interpreter

ADVANTAGES OF INTERPRETERS. Programming is most pleasant when an interpreter is
used. You type in a part of the program and run it. If there are errors, or the output is not
exactly what you want to see, simply change a line or two and try it again. When it is
right, add more code and continue. You move from coding to testing and back as fast as
your fingers can follow your thoughts.

Interpreters aid you in debugging. When something unexpected happens you can
stop the program, display the contents of variables, and let it continue.

DISADVANTAGES OF INTERPRETED PROGRAMS. Some disadvantages follow from the
162 nature of an interpreter. An interpreter must be resident in working storage while the

Interpreters Versus Compilers

program executes. That means that the program you’ve written cannot become a CP/M
command. The interpreter is the .COM file whose name is the command verb. The
interpreter’s .COM file must be available whenever the program is run; this can lead to a
conflict with the copying limits of your software license agreement.

Once loaded by the CCP, the interpreter loads the source program. This double load
may take longer than the total execution time of a small program. And the person who
uses your program first must be taught one more irrelevant thing.

INTERPRETERS UsE MORE STORAGE. Since the interpreter is present during execu-
tion, its size is deducted from the useful size of working storage. With a 64K system this
is a problem only for the largest of programs, or for programs that are to operate on very
large arrays of data. On the other hand, an interpreted program often takes less disk space
than the same program compiled.

PERFORMANCE OF INTERPRETED PROGRAMS. The performance of an interpreted prog-
ram may not be as fast as that of a compiled program. For every operation the program
specifies, the interpreter adds a small overhead cost for scanning and decoding the
program text. This is not always significant. There are many cases in which the speed of
an interpreted program will be identical to that of the same program compiled.

This is always true of simple programs. Who can tell the difference between an
execution time of 500 ms and one of 50 ms? Again, if the speed of the program is limited
by its /O so that it spends most of its time waiting for the typist or the disk drive, there
will be no noticeable difference between interpreted and compiled execution. Finally, if
the program spends most of its time in floating-point computation, compiling it will
produce little improvement in speed. Floating-point arithmetic is usually performed by
subroutines, and the subroutines run at the same speed whether called by an interpreter or
from compiled code.

Using a Compiler

DISADVANTAGES OF A COMPILER. A compiler places a barrier between you and your
program. You cannot cycle rapidly between coding and testing. After preparing the
source program with an editor you call the compiler as a CP/M command. It translates
the source program, a process that may take several minutes. If the compiler finds syntax
errors, you must return to the editor to fix them, then compile again.

If the compiler produces assembly language as its output, you must call the
assembler to translate that file. In all cases a linkage program must be run to link the
relocatable object program and form a .COM file. Finally, several minutes after you
keyed in the source text you can begin to test the program.

If it does not work correctly (and what program ever did, the first time?), you will
have little help in debugging. The cause of an error must be deduced by logic from the
symptoms, a challenging mental exercise. When you've identified the error, the entire
cycle must be repeated. If you can't find the error by logic, then the cycle must be
~ repeated twice: once to insert diagnostic displays into the program, and again to remove
them and fix the error.

163

Language Translators

CompIiLED PROGRAMS ARE CommanDs. The extra labor spent in developing a com-
piled program is repaid when the program is complete. Because the end product is a
machine-language program, it can be called like any other CP/M command.

PERFORMANCE OF CoMPILED PROGRAMS. The performance of a compiled program
will be at least as good as that of an interpreted program. In certain cases, but not all, it
will be much better. These cases arise when there is a great deal of processing to be done
and the data to be processed are characters and integers.

Partial Compilers

There is a middle ground between interpreters and full compilers (which translate the
source into machine language). A partial compiler converts the source program not into
machine language, but into a set of integers and constants that are the input to a simple
run-time interpreter. The interpreter can be speedy, as most of the work of scanning the
source code has been done by the compiler. But the compiler can be simpler, as the code
it must generate is closely related to the source program’s language. For the designer of
the package, then, a partial compiler is a good compromise.

For the programmer and the user the partial compiler is a compromise that has the
advantages of neither approach. It is as difficult to test and debug with a partial compiler
as with a full one. The run-time interpreter is the command verb and must be present
whenever a program is run. Only in storage use are there benefits. The sum of run-time
interpreter and object program is rarely larger than the size of a compiled program and its ~—
linked support modules, whereas the file size of the object program is small.

Matched Translators

A few vendors offer matched translators: a compiler and an interpreter for the same
language dialect. The programmer who can afford such a matched pair of translators is in
an enviable situation. That programmer can enjoy the benefits of an interpreter while
developing a program, then use the compiler to produce the final version.

THE REPRESENTATION OF PROGRAMS

Programs, like data, must be represented in computer storage. Programs are special in
that they may pass through several transformations, being represented differently at each
stage. The only form of program that the machine can handle is the representation known
as machine language. People almost never write in machine language. They write
programs in symbolic form, store the programs as ASCII text, and have them translated
to machine language by a translator program.

ProGraMms As TExt. The initial representation of any program is as ASCII characters,
164 typed at a terminal and received by an editor program. The editor might be your normal

The Representation of Programs

one, or it might be part of an interpreter. Either way, the characters that you've used to
symbolize the program are stored in ASCIL. The lines may be kept in working storage;
often they are written to a file. The original, ASCII version of a program is called the
source program because it is the source of all the later transformations.

ConbENseED PrROGRAM TEXT. An interpreter works with the symbolic form of the
program as typed, scanning it and carrying out the actions it calls for. For the sake of
speed, the interpreter will probably condense the text to make it easier to scan. Language
keywords and function symbols may be reduced to 1-byte integers, and numbers may be
converted to their binary or decimal representation. These changes will be made once as
the program is entered, and the reverse change will be made if the program has to be
listed.

INTERMEDIATE CODE. A partial compiler does not transform its input into the machine
language of the processor. Instead it transforms it into a highly condensed series of
binary integers that represent commands for a very simple, very fast interpreter. This
intermediate code is placed in a file (usually with filetype .INT). When the program is to
be executed, the small, fast interpreter is loaded: it loads the intermediate code and scans
it to carry out the actions it represents. Intermediate code may be thought of as the
machine language of an imaginary processor designed for their own purposes by the
people who designed the language translator.

- ASSEMBLY LANGUAGE. A program written in assembly language is created as a file of
ASCII text, just as any other source program is. Moreover, some compilers for other
languages produce as their output a file of assembly language source. That file must be
assembled to produce the machine language form of the program. The compiler-
designer’s job is simplified when assembly language is used as a sort of intermediate
code.

\HEXFiLEs. The output of the CP/M assembler, and of some compilers, is a picture of
the program in machine language, but not in its final form. Rather than producing the
binary values of machine language, the assembler produces a description of those binary
values in the form of ASCII characters. Where the machine-language program would
have bytes C30500h, the assembler writes the ASCII characters “C30500". Such afile
is called a Hex file and always has the .HEX filetype. The purpose of this strange
procedure is to create a file that can be (1) read by people, (2) punched into paper tape,
and (3) sent from machine to machine easily and with little chance of error.

REL Fies. Some compilers and assemblers produce yet another form of near-
machine language. These programs write a file that contains the binary values of
machine language to which is added more information. The extra information makes it
possible to load the machine-language program at any point in storage, rather than at the
single starting point for which it was assembled. Such files of relocatable code are given
~ the .REL filetype. 165

166

Language Translators

MACHINE LANGUAGE. A compiled program may move through three transformations
before it arrives at an executable form. Eventually it is transformed into the binary values
that the processor will recognize as operation codes. This is a machine-language
program. It can be stored in a .COM file and called for execution as a CP/M command.

JUDGING A LANGUAGE

Expressive Power. In an ideal world you could choose a programming language
only on the basis of how well its style of expression matched your problem and your
thinking habits. You have to have used more than one language, and each more than
once, before you can properly judge the expressive power of a notation. We won’t
venture to give criteria for such comparisons; too much depends on the problem you
want to solve and on your personal taste (many disputes about language are really
disputes over matters of taste). If you are only beginning, don’t worry about the matter,
but reserve judgement on your first language until you've tried at least two others.

PACKAGING. In the real world programming languages come in the form of software
packages. The package should be judged, like any other software purchase, on its
function, its reliability, its support, the quality of its documentation, and its price. A
good implementation of a language of mediocre expressive power may well be a better
tool than a sloppy implementation of a very elegant language.

LANGUAGE COMPATIBILITY. One of the criteria for judging a software package—its
function—takes a special twist when a programming language is being judged. Most
languages have a formal or informal standard that specifies the form and meaning of the
language’s statements. Those who design language translators seem to feel an irresisti-
ble urge to tamper with these standards. If there are two translators for a given language,
you may be sure that there are small differences between them in the syntax and
sometimes the meaning of statements. From these differences arise software incompati-
bilities; that is, programs that are valid according to one translator but that produce errors
from another, or worse, produce no errors but execute differently. It is hard to find out
about these problems in advance. Sometimes incompatible features are touted as
enhancements but more often they are mentioned in passing in the back pages of the
manuals. Occasionally they arise from errors, and so are not documented at all.

Common Use. There are several advantages to working with a widely used language.
There will be more published programs for you to use or to read for your edification.
There will be more people to whom you can turn for help. A large market tends to
stabilize the language, discouraging incompatible innovations and attracting more
publishers to produce more and better implementations.

PortaBILITY. When a language is supported by translators that run on several differ-
ent makes of processor, or under several different operating systems, programs in that
language become portable. Portability is very desirable. You can bring portable pro-
grams along when you upgrade to a bigger processor, and you stand a better chance of

Judging a Language

selling portable programs for a profit. Programs written to run on other machines may
run on yours with little change.

Language incompatibilities work against portability. The translator that runs on
another machine probably came from a different publisher, and the odds are good that
there are at least minor differences between that version of the language and yours. And,
of course, if you exploit the special features of your own hardware, or step outside the
standard language by using things like the PEEK and POKE statements of BASIC, you
defeat the idea of portability.

PERFORMANCE. Performance, expressed either as speed of translation or speed of
execution, is almost entirely an attribute of the package. A fast translator can be built for
any language, and any language can be translated into fast machine code, but both are
not likely to be true of the same translator. In order to get a quantitative measure of the
speed of a translator, you must try it out on a number of cases. This is the expensive and
lengthy process called benchmarking. If the language is both common and portable,
performance is less a concern. If speed of execution becomes a severe problem, you can
move to another translator or to a faster machine without having to rewrite all your
programs.

TRANSLATOR CASE STUDIES

Here are brief case studies of a sample of the language translators available for CP/M.

~— The sample includes a rudimentary interpreter, a sophisticated interpreter, a partial
compiler, and two full compilers. They illustrate the great variety of translators avail-
able, show the many ways in which CP/M’s facilities are presented to the programmer,
and give an example of how translators can be compared. We’ll look at only a few of the
translators on the market. By the time you read this some of these packages will have
been revised and expanded, and so you should not use these studies as an up-to-date
shopping guide.

tiny ¢

tiny ¢ (always in lowercase) is the product of tiny ¢ associates of Holmdel, New Jersey. It
is a small, simple interpreter that supports a subset of the C programming language. The
aim of its designers was to supply a modern programming language in a package so small
and inexpensive that it could be brought up by hobbyists on the most rudimentary
hardware.

DATA REPRESENTATION. tiny ¢ provides only two data formats: 16-bit binary integers
(which may be interpreted either as signed integers or as addresses) and characters.

FILE HANDLING. It supports only sequential files of 128-byte standard records; the
~— programmer is responsible for handling data record boundaries, for extracting fields of
records, and for detecting end of file. The CP/M version of the package was built for 167

Language Translators

CP/M release 1.4, before direct access was available. The designers made an unfortun-
ate choice in the way they handled the FCB, which effectively blocks the use of direct
access. The user is encouraged to modify the package, so this oversight can be
fixed—but only at the price of introducing a language incompatibility with other tiny c
users.

LANGUAGE POWER AND PorTABILITY. Despite the simplicity of the language that it
implements, tiny c’s expressive power is great. tiny ¢ encourages modular design and
extension of the language by the creation of a library of subroutines. If these features are
applied carefully, tiny c can be used to state almost any programming problem clearly
and simply. In practice such extensions are limited by the speed of the interpreter.
Portability is almost nil; the tiny ¢ language is implemented only by this translator.

PERFORMANCE, FUNCTION, ETC. By design, tiny ¢ has a limited amount of function.
Its documentation is copious and well written. Its price is reasonable. The interpreter is
extremely simple and so is relatively slow. A matching tiny ¢ compiler was announced
late in 1980; its use should solve most performance problems.

Microsoft Disk BASIC 5.0

The Microsoft Company of Bellevue, Washington, has produced BASIC interpreters for
several home computers. As a result the Microsoft dialect of the language is in very wide
usc.

DaTa REPRESENTATION. Disk BASIC 5.0 provides three representations for numbers.
It uses 16-bit signed binary integers and two different precisions of binary floating point.
The shorter of these is the default; it has a 24-bit fraction (six and a fraction decimal
digits). So-called double-precision numbers have a 7-byte fraction, giving 16 decimal
digits of precision. It is safe to use the longer form of floating point for commercial
arithmetic. Variables must be explicitly declared to have the longer precision; take care
not to let a default short-precision number slip into a commercial computation.

FiLe HanpLING. Disk BASIC allows access to all of CP/M’s file capabilities. The
translator handles data record boundaries. Sequential files are ASCII files; the CR, LF
markers are used to delimit data records. Files may be accessed at random by using an
entirely different, and much more awkward, set of language statements than those used
for sequential access. When these statements are used, all records must have the same
length. The binary representation of numbers can be placed in the records when direct
access is used; such items can’t be read with the sequential statements.

LANGUAGE POWER AND PORTABILITY. Several features of the Microsoft syntax differ

from that supported by other publishers’ BASICs, so almost any program will require

editing before it can be transported. On the other hand, programs in Microsoft’s version —
168 of BASIC can be moved with only trivial changes between any of the systems for which

Translator Case Studies

Microsoft has built a translator, including CP/M-86 for the Intel 8086. BASIC is not an
elegant programming language. Especially in a full-blown implementation such as this,
every statement of the language seems to be a special case with its own rules of
formation. Nevertheless, there are millions of BASIC programs running on hundreds of
thousands of machines. It is clearly possible, if not easy, to state most problems in it.

FuncTion, PERFORMANCE, ETC. Disk BASIC lacks function only in the area of
tracing and debugging tools, where its capabilities are scarcely better than those of tiny
¢. Its documentation is adequate. Disk BASIC is a sophisticated interpreter. It converts
the program to an internal representation in which language keywords, function sym-
bols, and numeric constants are stored in binary for fast scanning. Execution is fast
enough for most applications. A compiler for the same BASIC dialect is available from
the same publisher.

CBASIC

If not the first compiler available for CP/M, CBASIC by Compiler Systems, Inc., of
Sierra Madre, California, was certainly one of the first. It is a partial compiler. It reads a
BASIC source program and writes a file of intermediate code. That file is executed by a
fast, simple, run-time interpreter. Because it was on the market early, CBASIC was used
by several publishers of commercial software. As a result it is now very common.

" Dara REPRESENTATION. CBASIC supports two representations of numbers: 16-bit
signed integers and floating point. The floating-point numbers are stored in 8 bytes, of
which the first is the exponent. The fraction in the remaining 7 bytes of the number is
carried in BCD rather than in binary form, and so has 14 decimal digits of precision.

FiLe HanpLing. CBASIC file access uses ASCII text only. There is no way, aside
from tricky coding, to place binary data in a file. As this is written, CBASIC does not use
the direct access feature of CP/M version 2. Unless updated, it will not allow direct
access to very large files or files on disks where a physical extent is not the same as a
logical extent.

PROFESSIONAL Amps. The CBASIC compiler supports a %INCLUDE directive that
causes it to include another file of source text in the program being compiled. This
feature can be very helpful. It allows you to develop a library of subroutines and standard
code, and then include these in any program as you need them. Proper use of the
%INCLUDE feature can make it much easier to develop large programs.

LANGUAGE POWER AND PORTABILITY. There are a number of serious language incom-
patibilities between CBASIC and Microsoft Disk BASIC 5.0. For example, in CBASIC
the FOR loop always executes at least once; in Disk BASIC it may execute zero times.
Therefore, some programs that run correctly with one translator will run incorrectly with
~ the other. There are several differences in the I/O statements: the statements that request
direct access are especially incompatible. 169

170

Language Translators

Pascal/Z

Pascal/Z, a product of Ithaca Intersystems, Ithaca, New York, is a full compiler for the
Pascal language. The “Z” in its trademark signifies that it generates code for the Zilog
Z80 CPU. Programs translated by Pascal/Z will run only on a Z80 processor; they cannot
be executed on an 8080 processor. Pascal/Z translates a source program in Pascal into a
file of assembly language statements. That file must be translated by a Z80 assembler
(one is included with the package) to produce a .REL file of relocatable machine
language. That file is then given to a linkage program that merges it with support
programs from a library of relocatable subroutines. The end result is a.COM file that can
be called as a command.

DaTA REPRESENTATION. Pascal/Z supports 8-bit unsigned integers, 16-bit signed
integers, and binary floating-point numbers with a 24-bit fraction. Linkable subroutines
that will perform decimal arithmetic of any precision are included in the package. These
subroutines make it possible to use Pascal/Z for commercial work, but the performance
of such arithmetic is not likely to be as good, or the using code as clear, as they would be
if a more precise representation were built into the implementation.

FiLe HaNDLING. Pascal/Z supports both sequential and direct access to disk files.
Files may contain ASCII text in which data items are read and written much as they are in
BASIC. Files may also contain data items that are Pascal record variables; in that case
the record units are read and written in their binary representations.

LANGUAGE POWER AND PORTABILITY. Pascal is a language of good expressive power
and most programming problems can be stated clearly and simply in it. Pascal programs
are at least as portable as BASIC programs. There are Pascal compilers for many small
and medium-sized machines (and, since mid-1980, for the IBM 370). Pascal is widely
used in both Europe and the United States, but its use on large machines is concentrated
in universities.

The I/O statements supported by Pascal/Z are not entirely compatible with those of
other Pascal translators. There are also minor incompatibilities in the handling of
character strings and of external references.

PROFESSIONAL Aps. Pascal/Z has a source-inclusion feature like that of CBASIC. It
aids the programmer in another way by allowing subroutines to be written separately
from the main code. These external subroutines are then combined with the main
program by the linkage program. Thus two kinds of common libraries can be built up:
one of standard code sections, especially data declarations, and one of precompiled
subroutines. The subroutines need not be written in Pascal; they may be in assembly
language. This allows the programmer to handle hardware dependencies in the way that
harms portability the least.

Digital Research PL/I

The PL/I language was developed in the early 1960s by IBM as an alternative to both
COBOL and FORTRAN, then as now the dominant programming languages for large

—

Translator Case Studies

machines. Despite the fact that it was used as the basis for the M.I.T. Multics system
(built on GE computers), PL/l was identified as an IBM captive language for many
years. In recent years a PL/I standard has been issued by ANSI, the language has
acquired respectability in academic circles, and it is receiving support from other
computer makers, especially the makers of middle-sized machines.

Digital Research, the same company that produces CP/M, makes a PL/I compiler
for CP/M. The package includes RMAC, a relocating assembler, and LIB, a linkage
program. The compiler produces a .REL file as its output without the need for an
assembly step. The relocatable object program is then linked with support subroutines
from a library to form a .COM file. Subroutines assembled with RMAC can be linked
with PL/I programs, so machine and system dependencies may be isolated from the main
program.

DATA REPRESENTATION. PL/I handles 8-bit unsigned and 16-bit signed integers,
floating-point numbers with a 24-bit binary fraction, and BCD numbers with up to 15
digits of precision. BCD numbers are handled as fixed-point.values; that is, each number
has a fixed number of digits on each side of the decimal point. That format is particularly
convenient for commercial work.

FiLE HANDLING, All the CP/M file facilities are accessible from PL/I. Data items can
be transferred as ASCII text with the translator converting between ASCII and the
internal representation. Data structures can be read or written, in which case the file will
contain the internal, binary, representation.

PROFESSIONAL Amps. PL/I supports both source inclusion and linkable subroutines. It
also has a limited text substitution ability.

LANGUAGE POWER AnD PorTABILITY. PL/I is a good programming notation; the
choice between it and Pascal is largely a matter of individual taste. A full implementation
of PL/I will have more built-in functions and more elaborate 1/O facilities than Pascal
provides, but in its standard subset for small machines its capabilities are almost
identical to those of Pascal. Direct access /0 and variable-length strings are a standard
part of the PL/I language definition, which is not true of Pascal.

The PL/I community is large but consists primarily of users of large machines. PL/I
programs should be at least as portable as Pascal programs, but the sets of machines
served by the two languages are entirely different. PL/I programs can generally be
exchanged with users of large machines, and Pascal programs with users of small and
middle-sized ones. If you employ your CP/M system within a large company, PL/I may
give you the opportunity to exchange programs between your system and its big cousin
down the hall, or to call on the company’s programmers for advice.

171

172

Chapter 12

Assembly

Language
Programming

EVALUATING ASSEMBLY LANGUAGE

USING ASSEMBLY LANGUAGE
The Assembly Process
Making a .COM File
Relocating Assembly

ASSEMBLER FEATURES
Conditional Assembly
The Macro Concept
Macro Libraries

CP/M PROGRAMMING CONVENTIONS
Standard and Nonstandard Addresses
Low Storage
CCP Services for Command Programs
Program Entry and Exit

DEBUGGING AIDS
Using DDT
Applying Patches

173

173
173
174
175

177
177
178
181

183
183
183
186
187

189
189
189

Evaluating Assembly Language

Sometimes it is necessary to write applications, or parts of them, in assembly language.
Some applications won’t run fast enough even with compiled code, others require
features of the hardware or of CP/M that aren’t available in your programming language.

This chapter is for those who must use assembly language under CP/M. We will
talk about the use of ASM, the assembler that comes with CP/M, and MAC, a macro
assembler from Digital Research. We'll cover CP/M’s programming conventions and
the basics of using DDT. The presentation assumes that you know something about the
assembly language of the 8080 (or Z80) CPU.

EVALUATING ASSEMBLY LANGUAGE

We can judge assembly language just as we judged other languages. An assembler is no
casier to use than a compiler. Debugging is more difficult than with a compiled language
because small errors can cause things to happen that defy all analysis. A compiler takes
care of dozens of trivial housekeeping matters for you, such as the use of the registers and
the stack and the details of 16-bit arithmetic. Errors in such things simply don’t occur;
the errors that do occur are related in some way to the problem and your algorithm for
solving it. With assembly language all these details are left to you. Not only do they
burden the mental energies that you need for solving the problem at hand, but errors in
such code take as long or longer to find than the inevitable errors in the algorithm itself.

The portability of assembly language is nil. An assembled program will run only on
the hardware and under the operating system for which it was written. You can’t upgrade
your hardware or move to another operating system without a rewrite.

At present assembly language is widely used for CP/M applications. However. the
population of CP/M users is growing rapidly, and most of the newcomers are not
systems-oriented hobbyists but people who, if they know programming at all, know only
a high-level language.

The expressive power of assembly language is very low; every problem is difficult
and tedious to state. However, performance is as good as can be obtained. The
translators run quickly and the resulting code is as efficient as your ingenuity can make
it. Every feature of the system is accessible. It is these two features that keep assembly
language in use for applications.

USING ASSEMBLY LANGUAGE
The Assembly Process

The process of making an assembled program is very much like the process of making a
compiled program. You prepare the source program with an editor and store it in a file as
name.ASM. Then you invoke the assembler as a command, giving the filename of the
source file as its operand. The assembler reads the source program and produces a listing
file and an object file. The listing displays the source statements opposite the instruction
bytes they generate. The object file contains the byte values of the machine-language
program itself. It must be converted into a .COM file before it can be run.

173

174

Assembly Language Programming

THE .ASM FILE. The source of the assembly language program is built with an editor
and stored in a file of type .ASM. The source program contains two kinds of statements.
Instruction statements cause the assembler to generate machine instructions. Directives
direct the assembler in its own operations, telling it to reserve space, test a condition, or
define a macro.

Tue .PRN FiLe. The assembler produces a listing in which it displays the source
statements and the resulting object code. The listing can be directed to a file, which is
given the filename of the source program and the filetype of .PRN. The listing may be
directed to the terminal or printer instead of a file.

THe .HEX FiLE. The object code—the bytes that represent machine instructions—is
placed in a file that has the filename of the source program and a filetype of .HEX. The
.HEX file is an ASCII file; it contains a picture of the object code bytes, with each
hexadecimal digit represented by an ASCII character. Each line of the .HEX file
represents from 1 to 255 bytes of object code. Each line begins with a count of the bytes
in the line, and the location at which the bytes are meant to be loaded. Each line ends with
a check sum so that the line can be verified for correct transmission. PIP will verify the
check sums if told to do so with the H or | option.

Tue .SYM FiLE. The MAC assembler produces one additional file, name.SYM. This
contains a list of the labels in the program with their addresses. The .SYM file is
sometimes called (erroneously) a cross-reference file. It can be used with another Digital
Research product, the debugging aid SID. The .SYM file is useful in a small way as a
documentation aid.

Making a .COM File

PROGRAM ADDRESSES. Any assembled program must deal with addresses. Jump and
call instructions contain addresses as operands; they instruct the machine to begin
execution at those addresses. Your program may contain address constants, 16-bit fields
that contain the addresses of data areas or points in the program. In the source program
you specify such addresses as labels. At the time of writing you don’t care about the
value of these addresses, only that they refer to the part of the program you intend. At
execution time the machine must be given a specific address. A jump instruction must
contain a 16-bit integer that is the address of the target of the jump.

THE ORIGIN PrROBLEM. The value of that address depends on two things: the origin of
the program, that is, the address of its first byte, and an offset, that is, the length of
program that precedes the location in question. The address wanted is the sum of those
two things, the origin and an offset. In order to put the address into the program, both
pieces of information must be known. The offset is easy; the assembler simply counts the
bytes it has generated up to the point of assembling the labeled item. The value of the
origin must be supplied.

ABSOLUTE ASSEMBLY. With an absolute assembler such as ASM or MAC, you are
required to tell the assembler the value of the origin. The assembler can then generate

Using Assembly Language

addresses as the sum of that origin and its knowledge of the offset. These absolute
addresses are placed in the .HEX file. Once there, they can’t be changed; you can only
reassemble with a different origin value.

Since the program contains addresses computed on the basis of a certain origin, it
must be loaded for execution at that origin and no other. Suppose the assembler was told
that the origin was to be 0100h, and on that basis it assembled the first jump with a target
address of 0340h. If the program were then loaded into storage at 1000h, it would run
correctly up to that jump. Thereupon it would jump to 0340h, regardless of the fact that
the target instruction was not there. Something would be there, perhaps a fragment of an
old program. Strange things would happen.

LoapinG A .HEXFILE. Once the name. HEX file has been created it is a simple matter
to convert it to a name.COM file. The LOAD command performs this task. Its form is:

LOAD filename

Only a filename is given; the filetype is assumed to be .HEX. The LOAD command reads
the named .HEX file and places the bytes that file describes into storage at their
assembled origin. Having created an exact image of the machine-language program,
LOAD opens and writes a file using the stored program as the data. The file has the name
given as LOAD’s operand and the filetype of .COM,; it is an exact copy of the program,
ready to be loaded by the CCP and run.

Relocating Assembly

An absolute assembler requires you to decide the program’s origin in advance and to
state that origin in the source file. It's possible to defer a decision on the program’s origin
until after it has been assembled. An assembler that lets the origin go undefined is a
relocating assembler. The act of defining a program’s origin after assembly is called
relocation.

RELOCATING ASSEMBLERS. Relocating assemblers usually come as part of a package
with a compiler. Digital Research PL/I comes with RMAC; Pascal/Z is delivered with
ASMBL. A relocating assembler ducks the whole question of the program’s origin. It
does not do a complete job of assembling addresses. It places in the object program only
the offset values, not the sum of origin and offset.

Tue .REL FiLE. A relocating assembler doesn’t write a .HEX file. It places the object
code, in binary, in a file of type .REL. .REL files are not ASCII files; they may contain
any byte value. The assembler puts extra information in the file, naming all the points in
the program at which incomplete addresses occur. The extra information enables a
different program, a linkage editor or linker, to relocate the program.

RELOCATION AND LINKING. Relocation is the job of going through a .REL file and
adding an origin value into all the incomplete addresses. The origin is supplied at the
time of linking, not at the time of assembling. This means that a relocatable program can

y .1

Assembly Language Programming

be set up to run at any origin without reassembly. At the same time the .REL files of a
number of programs can be linked together.

ENTRIES AND EXTERNAL REFERENCES. A relocating assembler has one other feature
that an absolute assembler does not. It allows the program to declare a label within the
program as an entry point, and to declare a label that is not defined in the program as an
external reference. An entry is a label within the program that may be referenced by
some other program, one assembled at a different time. An external reference tells the
assembler that the label so declared is not part of this program, but is, or will be, defined
as an entry in some other program.

For an entry the assembler puts the name of the entry point and its offset within the
program into the .REL file, with a flag stating that it is an entry point.

For an external reference the assembler puts in the .REL file the name of the
external label, and the offset of every instruction in the program that referenced that
name. The addresses in those instructions can’t be assembled because the assembler
doesn’t know what the value of the external label will be. It only knows, or rather it takes
on faith, that the value of the external label will be defined later.

LiNkERs. A relocatable program with its incomplete addresses, relocation informa-
tion, entry labels, and external references is obviously not ready to be loaded and made
into a command. Too much information is missing. Supplying the missing informa-
tion—the program’s actual origin and the value of its external references—is the job of a
linker. Linkers too come as part of a package with a compiler. The Microsoft COBOL
and BASIC compilers come with LINK-80; Digital Research PL/I comes with LIB.

All work in the same way. A linker is given the name of a main program (a .REL
file) and the names of one or more libraries of subroutines, which are also in relocatable
form. It is told, or assumes, some origin for the program. The linker proceeds as
described in the following.

Loaping THE .REL FiLe. It loads the .REL file and goes through it, resolving all
addresses by adding the origin to them. It notes the names of all entry points. It notes all
external references. It then searches the library for subroutines that contain entries
matching the main program’s external references.

RESOLVING EXTERNAL REFERENCES. When it finds a subroutine, it loads it following
the main program. The first subroutine’s origin will be the byte following the end of the
main program. The linker must relocate all the subroutine’s addresses by adding this
origin to them. Wherever the main program contained a reference to the subroutine, the
assembler could only leave zeros. The subroutine’s address is now known and the linker
can fill in these addresses.

Many subroutines may be loaded, and each may have its own external references
that cause the linker to search for yet other entry points. Each subroutine provides an
entry (or several entries) that satisfies the external references of other programs. The
linker weaves all these interprogram references together, filling in all the information
that was not known at the time of assembly. The linked code is then written as a .COM

176 file.

Using Assembly Language

Uses oF RELOCATION AND LINKING. Since relocating assemblers and linkers are
distributed with compilers, you might infer that they are useful only with compilers.
That isn’t the case. The work of a compiler’s designer is certainly made easier by the
presence of a linker. The designer can create a library of many small subroutines, each of
which performs a simple task needed by compiled programs: one for each floating-point
operation, for example. The compiler, on encountering a floating-point operation, need
only generate a call to an external routine instead of all the code to do the operation. A
compiled program will have dozens of external references to be resolved by the linker.

If you have a relocating assembler and linker, you can—and certainly should—
apply them to your own work. They allow you to adopt a modular style of programming.
You can create a set of preassembled subroutines that provide you with some of the
convenience of using a compiler. You might even use some of the compiler’s sub-
routines as your own. You can isolate device- and system-dependent parts of your
application to separate subroutines. For a program that uses advanced features of the
terminal you can specify one subroutine for each special terminal function, such as
clearing the screen. Then to make the program work with a different kind of terminal,
you need only revise the subroutines and relink.

ASSEMBLER FEATURES

All CP/M assemblers support directives that let you manipulate the source program. The
simplest way is conditional assembly, which lets you skip over or assemble a portion of
code, depending on some condition. Macro assemblers offer more.

Conditional Assembly

Macro assemblers commonly contain some means of conditional assembly; that is,
statements that allow you to control the assembly of the program by the value of
symbols. Both ASM and MAC (and most other assemblers) provide an IF directive that
allows alternate parts of the program to be skipped under some condition. MAC includes
loop directives so that a part of the program can be assembled repeatedly.

Tre |F DiRecTivE. The IF directive is used to skip or include parts of a program
according to the value of an expression. The text that is skipped or included can be
another assembler directive, including another conditional statement or, in MAC, a part
of a macro. The expression is usually a simple label but may be any arithmetic
combination of constants and labels. Under ASM the normal use of IF is to skip over
parts of the program that are not wanted in a particular version of the program. Example
12-1 shows the form of this use of IF.

Tue ELSE Directive. MAC allows an IF directive to be paired with a matching
ELSE directive so that a choice between alternate code sections can be made.

REPEATED AssemBLY. MAC offers three looping directives. The REPT directive
repeats the assembly of a section of code a certain number of times. It is normally used to

177

178

Assembly Language Programming

EXAMPLE 12-1
A sketch of the typical use of the IF directive: the true (nonzero) or false (zero) value of an
expression selects statements for assembly (ELSE is supported by MAC but not by ASM).

TRUE EQU =1 : GIVE NAMES TO
FALSE EQU] : ..BOOLEAN VALUES
LONGSMESSAGE EQU FALSE
NOVICE EQU TRUE
IF NOVICE
TIMEOUT EQU 60 ; NOVICE GETS 60 SECONDS
ELSE
TIMEQUT EQU 15 ;s EXPERTS ONLY GET L5
ENDIF
LXI D, TIMEQUT
CALL SETTIME ; START ANSWER CLOCK
IF NOVICE OR LONGSMESSAGE
DB “You waited too long to answer,”
DB “ the penalty is L0 points”
ELSE
DB “Timeout, =107
ENDIF
DB CR,LF,” 8"

initialize tables and other repetitive arrays of constants. The IRP directive repeats a
section of code once for each of a list of operands, substituting a different operand from
the list on each pass. IRP is used to create a series of instruction groups, each
parameterized differently.

The IRPC directive repeats a sequence of code once for each character in its
operand, allowing substitution of a different, single character on each pass. IRPC finds
its greatest use within macros, as it is the only way MAC provides of examining the
letters of a single operand—something that the author of a macro often needs to do.

The Macro Concept

As we said in Chapter 7, “macro” is a term that implies any grouping of statements for
the sake of simplicity. In programming the term implies more. At a general level it is
almost a synonym for the concept of abstraction, the most powerful notion in the
programmer’s armory. In practice, as in the MAC assembler, it also implies the concept
of substitution.

ABSTRACTION. All of us have practiced abstraction from earliest childhood. A child
learning to speak points to a thing and is told that it is a “cup.” Later the same child points

—

Assembler Features

to athing of different color and shape and again is told that it is a “cup.” Most babies need
only a few repetitions of that experience before they form an abstraction: “cup” becomes
the name of a class of things that are hollow and hold liquid for drinking.

To form an abstraction is to define a class of things that have characteristics in
common. Our brains are clearly designed to deal with abstractions, and the value of that
is also clear. Once we've formed an abstraction we’ve made a powerful simplification in
our view of the world. The baby can learn responses to the class “cup” as a whole; as
soon as a new thing can be placed in the cup class the baby knows how to deal with it.
(Once in a while we put things in the wrong class and so deal with them inappropriately,
but that’s another story.)

UsEs oF ABSTRACTION. There are endless uses of abstraction in programming. A large
part of the developing science of software is the application of abstraction in different
forms. Modular programming deals with abstracting single functions of a program,
defining those functions in isolated subroutines, and then treating the subroutines as
unitary things, or abstractions (relocation and linking are a great aid to this). Top-down
programming involves breaking a large task into ever smaller steps, each of which is
treated as an abstraction at one level and defined in terms of narrower abstractions at the
next.

Macros as ABsTRACTIONS. In assembly language programming a macro is a means
of converting a sequence of assembler instructions into a single instruction, so that the
group may be treated as an abstraction. Used properly, this allows great simplification in
the task of programming.

All macro assemblers provide a form for macro definition. An example of how
MAC does it appears in Figure 12-1. That sequence of assembler instructions defines a
macro whose name is PROLOG. The body of PROLOG consists of the statements
between the MACRO statement and the ENDM statement. The MACRO statement,
besides declaring the macro’s name and marking the start of its text, declares that
PROLOG has two parameters, named ?SIZE and ?MAIN.

PROLOG is one programmer’s abstraction of the class of things “entering a
pregram under CP/M™; when made a macro, the abstraction can be called with a single
line of code. Provided the code works in all cases, the programmer can forget the details
of program entry and think about things more relevant to the problem at hand.

SuBsTITUTION. We met the idea of substitution when talking about submit files in
Chapter 8. Substitution is the process of replacing one string of characters with another
one. A macro assembler does two kinds of substitution. It replaces a call to a macro with
the whole text of the macro it names. And within a macro’s text it substitutes for
parameters the values given in the macro instruction.

CALLING A MAcro. After having read the definition of PROLOG, MAC will watch
for the occurrence of that word in the program text. An occurrence of PROLOG and any
operands following it constitute a macro call. When it finds a macro call for PROLOG,
- MAC will replace the call with the entire body of PROLOG and continue assembling.
The instructions contained in PROLOG will become part of the program at that point.

179

180

Assembly Language Programming

; PROGRAM ENTRY MACRO : BUILD LOCAL STACK, SAVE CCP”S STACK
; ON IT. HANDLE RETURN TO CCP IF MAIN RETURNS HERE.
PROLOG MACRO ?S8IZE, ?MAIN

LOCAL STKSIZE

iF NUL ?SIZE
STKSIZE SET 16
ELSE
STKSIZE SET ?SIZE
ENDIF
ORG 0100H ; START AT T.P.A.
LXI H,0
DAD SP ; HL = CCP STACK PTR
LXI SF,STDSTACK ; SET OUR STACK PTR
PUSH H ; SAVE CCP PTR FOR EXIT
IF NUL ?MAIN
CALL MAIN ; CALL MAINLINE CNDE
ELSE
CALL TMAIN ; TALL MAINLINE CODE
ENDIF

.
H

: OM NORMAL EXIT, MAIN LINE WILL RETURN TO HERE

i
EPILOG POP H ; RECOVER CCP“S STACK PTR,

SPHL ; «.ACTIVATE IT, AND
RET 5 .+RETURN TO CCP
i
DS 2*STKSIZE ;RESERVE STACK SPACE
STDSTACK EQU $
ENDM

FIGURE 12-1
The PROLOG macro, typical of assembly macros under MAC. It abstracts the idea of
program entry and exit for a simple CP/M command.

Note that MAC isn’t choosy about where it finds a macro call. PROLOG was
written under the assumption that its call would have the form of a machine instruction,
with the macro name in the opcode position. If the word appears as a label or as the
operand of an instruction, MAC will replace it there just as readily (with erroneous
results).

Macro PARAMETERS. The second substitution a macro assembler performs is to take
parameter values from the macro call and substitute them for parameter names in the text
of the macro. PROLOG has two parameters, ?SIZE and ?MAIN. Whatever characters
occupy the first operand position in the macro call will replace every occurrence of
?SIZE in the body of the macro as it is substituted. The characters in the second operand
position of the call will replace ?MAIN. If there are no characters in an operand position,
the corresponding parameter name will be replaced by the null string (it will vanish).
Note that there is no requirement that a parameter name begin with “?""; that was done so
that the parameter names would stand out in the code.

IF N A Macro DerFiNiTION. The PROLOG macro in Figure 12-1 contains several
uses of IF. In each case it tests to see if one of its parameters has no value (has been
replaced by the null string). If the ?SIZE parameter is null, PROLOG will supply a
default size of 16 words of stack space. If the ZMAIN parameter is null, it will start the
program by calling a label MAIN; otherwise it will call the label defined by the
parameter.

Assembler Features

Macro Libraries

Sometimes a macro is useful only within the program for which it is written. You’d type
the definition of such a macro at the top of the source program, call it where it was
needed, and that would be that.

A macro often represents the abstraction of something that is useful in many
programs. The PROLOG macro in Figure 12-1 could be useful in many assembly
programs. Such macros are better kept outside any program and included wherever they
are wanted. Most macro assemblers have some way of bringing in code from another
file. MAC’s method is the MACLIB directive.

Tue MACLIB DirecTIVE. When MAC runs across a MACLIB directive in the source
program, it opens the file named in the directive and incorporates the lines of that file in
the source program at that point. The MACLIB statement is very like a macro call: the
directive is replaced by the contents of the macro library.

MACLIB ror INCLUDING SOURCE. The term “macro library” used by the MAC
documentation is confusing because such files aren’t libraries in the usual sense. They
are sections of assembler source text that are kept in separate files. If it weren't for a
restriction on its use, MACLIB could be used exactly as you'd use the %INCLUDE
statement of CBASIC—as a way of including prewritten chunks of code in your
program.

Unfortunately MAC can’t handle source inclusion in that general form. The
assembler text brought in by a MACLIB directive is not allowed to contain any assembler
statements that generate machine language. It may contain only statements that define
names to the assembler: equate and set statements and the definitions of macros.

MACLIB ror DEcLARATIONS. Even with that restriction, MACLIB is still useful as a
way of bringing in a block of prewritten code. There are a couple of dozen values that
appear in most CP/M assembly code—values that define important locations in low
storage, names for the important ASCII control characters, and the like. Figure 12-2
shows the text of a file called CPMEQU.LIB. Such a file could be included in any
program to define these common names.

This source inclusion is especially useful when you are building a suite of related
programs. Such programs will have a set of common items that should be named
consistently in all. That consistency is best achieved by putting the equates that define
those names in a library file and including it in each program. Then if a name must be
changed, it need be changed only once, in the library, after which all the programs would
be reassembled. If you are using arelocating assembler to create a library of subroutines,
the same technique can be used for names that are common to the main program and all
its subroutines.

MACLIB ror Macro DeriniTions. The expected use of MACLIB is to bring in the
definitions of a set of related macros. There’s nothing magic about a macro library; the
assembler sees no difference between a macro that is defined in the source program and

181

182

Assembly Language Programming

* % & & % CPMEQU.LIB: EQUATE NAMES USEFUL IN ASSEMBLY CODE

IMPORTANT ADDRESSES

= mE ms

BOOT EQU 0000H ; WARM=START EXIT POINT
BDOS EQU 0005H : SERVICE REQUEST ENTRY
CPMFCB EQU 005CH i FCB SET UP BY CCP

TFPA EQU Ql00H ; STANDARD PROGRAM ORIGIN
CPFMBUFF EQU 00B80H :+ DEFAULT 1/0 BUFFER

: ASCII CHARACTER SET NAMES

BEL EQU 07H ; BELL OR BEEP

BS EQU 08H : BACKSPACE

HT EQU 09H s HORIZONTAL TAB

LF £QU 0AH : LINEFEED

vT EQU 0BH 3 VERTICAL TAB

FF EQU 0CH ; FORMFEED

CR EQU ODH : CARRIAGE RETURN

EOF EQU LAH ; END OF FILE FLAG (SUB)

ESC EQU 1BH ; ESCAPE

BLANK EQU 20H ; BLANK

UCASE EQU OFFH=020H : “AND” LOWER CASE TO UPPER
CCASE EQU 40H 3 “OR” CONTROL TO CHARACTER

’

R END OF CPMEQU.LIE

FIGURE 12-2
The CPMEQU.LIB file can be included in almost any program to define names for locations
and values often used in CP/M.

one that is brought into the source program with MACLIB. It is simply more convenient
to place common macro definitions in a file external to the programs that use them. If a
macro definition needs changing, it is changed only in the library; all assemblies that
include it will pick up the new definition.

MACLIB ror Common Cope. MACLIB can't handle statements that generate code.
Itisn’t possible to put the text of a group of common subroutines in a file and then include
them at the appropriate place in your program with a MACLIB directive. Assembler
error messages will result,

There is a way to get the same effect. If the common subroutines are surrounded by
MACRO and ENDM statements, the file can be read by MACLIB. The subroutine code
is saved in storage as the definition of a macro. At the point in the program where you
want the subroutines to appear, place a macro call to the subroutine macro. Figure 13-3
shows the contents of a library of console output subroutines that is organized this way.

The subroutines of Figure 13-3 bring up the matter of styles of abstraction. They
represent one way of abstracting the idea of console output. Another way, espoused by
the authors of the MAC manual, is to have a console output macro that you call wherever
in the code you need it. The macro call is used instead of a call to a subroutine. The first
time it is expanded the macro generates a small subroutine in line with the code; on
subsequent calls it generates only a call to that subroutine. A third style of abstracting the
idea of console output is to make the subroutine an external one and link it to the program
after assembly. All three methods are valid.

CP/M Programming Conventions
CP/M PROGRAMMING CONVENTIONS

In order to write assembly language programs for CP/M you must understand the
programming conventions used within CP/M. When you use a compiler or interpreter,
all these details are handled for you by the language translator. With assembly language
you must work with them directly. The conventions cover three areas: the use of low
storage, the method of making service requests, and the use of the File Control Block, or
FCB.

From now on we must use more precise terms than “Monitor” for the resident part
of CP/M. We'll still refer to the Monitor when we are talking about all of the CP/M code
in high storage, but we have to distinguish between the Console Command Processor
(CCP), the Basic Disk Operating System (BDOS) which resides above the CCP and
handles service requests, and the Basic I/O System (BIOS), which sits at the very top of
storage and operates the devices.

Standard and Nonstandard Addresses

Discussions of CP/M’s use of storage are complicated by the fact that not all CP/M
variants use the same addresses. CP/M has been adapted to a number of machines; in a
few of them the hardware design forced the adapters to use addresses different from
those we describe here. We'll describe standard CP/M, in which low storage is located at
address 0000h, commands are loaded at 0100h, and the Monitor resides at the top of
storage.

Low Storage

The first 256 locations of working storage, from 00h through FFh, are reserved by the
Monitor to hold system information and to act as an interface between your program and
the BDOS. It contains a disk buffer, information on the command that called the
program, and the route to the BDOS for service requests. There is a map of low storage in
Figure 12-3. We’ll tour the main points of interest on that map, from low addresses to
high, in the discussion that follows.

The address immediately after low storage, 0100h, is the point at which all
command programs are loaded. That is the origin of the Transient Program Area
(“transient” because commands are loaded into it one after another), or TPA. The
address 0100h is usually equated to TPA and used as the origin of absolute assemblies.

00h: THE WARM START Jump. The first 3 bytes of storage contain a jump to a routine
in the BIOS that performs warm start initialization. If your program branches to 00h, it
will be terminated and a warm start will occur. The CCP and BDOS will be reloaded
from the reserved tracks of the A-disk (if the A-disk isn't bootable, the system will

183

184

Assembly Language Programming

0 1 2 3 4 5 6 7
T

T T T
Warm 10B-| | Cur.
00 ,TMPJ start vTE || disk IMP BDIDS

08 Restart 1
10 Restart 2
18 Restart 3
20 Restart 4
28 Restart 5
30 Restart 6
38 Restart 7 (DDT and SID)
40
BIOS work area
48
50
58 ’ 5B
SCI
60
68
Default file control block
70
78
!)
R . e
. Default file buffer
FO FF

FIGURE 12-3
A map of low storage from address 0000h through address O0FFh.

hang). If your program was called from within a submit file, the next submitted
command will be executed. If it wasn’t, the user will see the normal CCP prompt.

A jump to 00h is the conventional way to end a CP/M program, and certainly the
best way to end after an error of some kind.

03h: THE IOBYTE. The next byte (at 03h) is called the IOBYTE. It contains four
2-bit groups that specify the current assignment of logical to physical device names.
There are service requests (numbers 7 and 8) for getting and setting the current values of
the IOBYTE. If you want to check or alter the IOBYTE, you should use these requests,

CPI/M Programming Conventions

even though the byte is easily accessible in CP/M. The byte at 03h might not be up to
date under MP/M, whereas under CP/M-86 the IOBYTE is kept elsewhere.

04h: Default Disk and User Code. The byte at 04h contains two 4-bit numbers. The
least significant 4 bits hold the drive number of the current default drive, as encoded by
service request 25 (see next chapter). The most significant 4 bits contain the active user
code, as set by the USER command. As with the IOBYTE, both of these values can be
checked or set through service requests. And also, as with the IOBYTE, the values are
stored here only under CP/M; MP/M and CP/M-86 are different.

05h: The Service Request Jump. At location 05h there is another jump instruction.
This one points to the BDOS, where service requests are handled. Your program issues a
service request by preparing parameters in the registers and calling (not jumping to)
location 05h.

S1zE OF STORAGE. The address in the service request jump is the lowest address of the
BDOS and the address of the byte following the CCP in storage. If your program needs to
use all available storage, it may use all the space from 0100 up to (but not including) the
byte addressed by the service request jump. If it does so, it will overwrite the CCP. In
that case the program must end with a warm start so the CCP will be reloaded. If your
program does not require all of storage, it might subtract 810h from the address in
location 06h and use storage only to that point. That will leave the CCP (which is just
over 800h bytes long) intact.

THE RESTART LocaTions. The 8080 and Z80 hardware provides a restart instruction
that is like a very concise jump to one of eight locations in low storage. These locations
coincide with the storage reserved by CP/M. A restart zero instruction will transfer
control to location 00h, the warm start jump, and so cause a warm start.

Restarts 1 through 7 transfer control to locations 08h, 10h, 18h, and so on up to
38h. These same locations may receive control during a device interrupt. The 8-byte
areas for restarts 1 through 5 are not defined by CP/M. Unless you are writing an
interrupt handler, you should avoid them also. It is tempting to think of using a restart
instruction in some clever way to get around in your program, but to do so is to make
your program nonportable. Someone else’s system might have a hardware use for those
locations.

CP/M has reserved restart location 6 (30h) for an unspecified purpose and never
used it. Nonetheless, it should be avoided.

The DDT and SID debugging programs use restart location 7 (38h). If your
program alters the area from 38h to 3Fh, it cannot be tested with those tools. Under
MP/M the DDT program can be configured to use any of the restart locations for its
work.

Restart location 7 was probably chosen because a RST 7 instruction has the bit
pattern FFh. That’s the value that most hardware will return when the CPU reads from

185

186

Assembly Language Programming

nonexistent storage. If a program branches to a nonexistent address, the CPU will fetch
an operation code of FFh and do an RST 7.

40h: Tue BIOS Work Area. The BIOS that handles disk and other I/O has been
given the 16 bytes from 40h through 4Fh as a work area. If you are doing systems
programming and get deep into the logic of the BIOS, you may discover what this area is
used for (its use varies from vendor to vendor). Otherwise leave it strictly alone;
alterations could be catastrophic for the file system.

5Ch: THE DEFAULT FCB. The space from 5Ch to 7Fh always contains an FCB. This
FCB is set up by the CCP as it prepares to load a command. In later chapters we will
make a lot of use of the default FCB.

80h: THe DeEFauLT BUurFer. The 128 bytes from 80h to FFh have two purposes.
First, this space makes a convenient buffer for simple file operations. Most standard
commands use it for this purpose. Second, when a command begins operation it will find
a copy of the command line as typed by the user in the default buffer.

CCP Services for Command Programs

The CCP performs two helpful services for command programs, services that make it
easier to write commands. It sets up the default FCB, and it prepares the command line in
the default buffer, ready for inspection.

Tue Commanp Tair. Before it transfers control to a command, the CCP copies the
characters of the command line into the default buffer, beginning at 81h. The characters
of the verb are omitted. All the characters that followed the verb are retained. This line is
called the command tail (it follows the verb that was at the head of the line). Lowercase
characters are translated into uppercase characters, but otherwise the line is exactly as
the user typed it. It will begin with at least one space, and may contain any number of
spaces between operands and following the last operand. A byte of 00h will follow.

The CCP places the length of the command tail, excluding the 00h byte at the end,
in the byte at 80h.

FiLEREF OPERANDS, The CCP assumes that the first two command operands are
filerefs. It places each in the default FCB. The first fileref is set up at the head of the FCB;
that file can be opened and accessed using the FCB just as the program finds it. The
second fileref, if there is one, is set up in FCB format in the second half of the default
FCB beginning at 6Ch. If it is a fileref, it must be copied elsewhere before the FCB is
used, because opening a file causes the second half of the FCB to be overwritten. The
CCP is very generous about what it will treat as a fileref. If it finds a string of 20
characters in the first operand position, it will place the first eight of them in the default
FCB as a filename.

CP/M Programming Conventions

AmBIGUOUs FILEREFS. The CCP sets up ambiguous filerefs just as it does unique
ones. However, it does not permit an asterisk reference to be put into the default FCB. If
it sees an asterisk in a filename or filetype, the CCP deletes it and fills to the end of the
field with question marks. If the user typed X*.ASM as the first operand, then the fileref

the user can pass you an ambiguous fileref.

Program Entry and Exit

A command program is loaded at 0100h, the start of the TPA. After preparing the
default FCB and the command tail, the CCP transfers control to the start of the TPA at
0100h. Your program must initialize itself, and later terminate in an orderly way. You
have several options as to how you can handle entry and exit. Most of the considerations
center on how the stack pointer register is to be handled.

SimpLE PROGRAMS. When control arrives at your program’s first instruction, the stack
pointer addresses space in the CCP sufficient to handle eight nested calls (or interrupts).
Because of that a simple program can be written as a subroutine of the CCP. Such a
program just executes until it is finished, then issues a return instruction.

If you write such a program, you will find that when it ends the CCP’s prompt
comes out instantly. When you run most applications there is a pause of 1 or 2 seconds
while the warm start takes place. No warm start occurs when a program terminates by
returning to the CCP. That’s why the prompt comes out so quickly at the end of a simple
program.

TypicaL PrROGRAMS. Very simple programs can be coded quickly as subroutines of
the CCP, but this design creates two problems. The first is that larger programs need
more stack space than the CCP provides. The stack pointer register must be set up to
address an area local to the program.

The second problem is that (in CP/M 2) the CCP doesn’t handle submitted files
correctly unless each submitted command ends in a warm start. This is a pity, because
the quick response obtained by avoiding a warm start is very nice. The fact remains that,
to be useful in a submit file, a program must end in a warm start rather than just return to
the CCP.

Tue PROLOG Macro. The PROLOG macro in Figure 12-4 shows how this can be
handled. Itis meant to be used with a program organized like the sketch in Example 12-2:
the prolog code lowest in storage, then variables and constants, then the main routine,
and subroutines last. The main routine should return to its caller even though the return is
to a JMP BOOT instruction. It might seem simpler to put the warm start jump in the
main routine, but there are debugging advantages to having a single, known, exit point
from the program.

ELABORATE PROGRAMS. Two more needs commonly arise. First, a more elaborate

187

188

Assembly Language Programming

PROGRAM ENTRY MACRO FOR COMPLEX PROGRAMS: FIND BOTTOM OF
CCP AND SET STACK THERE, CALL MAIN WITH HL=END OF STORAGE.

P e e me e

ROLOG2 MACRO ?MAIN
ORG 0L00H ; START AT T.P.A.
LHLD BDOS+1L ; HL ==> BDOS
SPHL ; STACK STARTS UNDER BDOS
LXI D,0-128 ; NEGATIVE STACK SIZE
DAD D ; HL --> STACK BOTTOM
DCX H ; HL --> LAST USABLE BYTE
IF NUL ?MAIN
CALL MAIN ; CALL MAINLINE CODE
ELSE
CALL PMAIN ; CALL MAINLINE CODE
ENDIF

; ON ANY EXIT, CONTROL WILL RETURN HERE

éPILOG JMP BOOT ; DO A WARM START
;7 ERROR EXIT TO ISSUE MESSAGE ADDRESSED BY DE, ERASE
i ACTIVE SUBMIT FILE (IF ANY).

ERROREXIT EQU §
MVI c,9 : PRINT LINE TO “§°
CALL BDOS

i ERROR EXIT TO TERMINATE SUBMIT ONLY

i
ERROROUT EQU 5

LXI D, SUBMITFCB

MVI c,L9 ; ERASE FILE IN FCB

CALL BDOS

JMP EPILOG ; EXIT BY SINGLE POINT
FCB USED FOR ERASING SUBMIT FILE “A:$$$.SUB” -- ONLY

FIRST 16 BYTES ARE SIGNIFICANT.

Ul ~e ~e e e

UBMITFCB EQU s
DB 1,788$ suB~©,0,0,0,0
ENDM

FIGURE 12-4

The PROLOG2 macro does four things needed in a complex program: it provides a large
stack, sizes storage, provides for a terminating error message, and cancels an active submit
file on an error.

program may need to allocate all possible storage, rather than confine itself to areas
defined in the program. Second, an elaborate program will usually have checks for many
different error conditions, and for each it will have a message to be typed at the terminal.

An elaborate program should be written with the assumption that it may be called
from a submitted file. If it stops because of some fatal error, it should take steps to cancel
the execution of the submitted file that (may have) called it. The official way to cancel a
submitted file is to erase $$$.SUB.

THe PROLOG2 Macro. The PROLOG2 macro in Figure 12-4 handles all these
matters. It finds the size of storage up to the bottom of the BDOS, and sets the program’s
stack there. It deducts 128 bytes (allowing for up to 64 nested calls) and passes that
address to the main routine in the HL register pair. This address may be saved and used as
the limit of storage allocation.

—

CPIM Programming Conventions

EXAMPLE 12-2
General layout of a program that uses PROLOG. The macro must jump over the stack it
defines, so it’s convenient to place the program’s variables just after the stack.

(MACLIB directives)
(macros defined in this program)

PROLOG nn,name
(program variables, FCBs, buffers)
name EQU $

(body of main program)

(subroutines for this program)

(common subroutines from libraries

END

Tae Error Exit. PROLOG2 provides two ways to end the program. If the main
routine ends normally, it will simply return to EPILOG, where a warm start is done. The
macro also supplies a label ERROREXIT. If a fatal error occurs, the program may load
the DE pair to address an error message and jump to the error exit. There the macro
provides code to display the error message and to erase the active submit file if there is
one. The two service requests it uses will be described in the next chapter. (Note that this
method of ending a submitted file will not work in MP/M, where each user’s active
submit file has a different name.)

DEBUGGING AIDS

Debugging an assembly language program can be an extraordinarily frustrating job. A
debugging aid is a program that lets you exercise a program under your direct control,
stopping it at critical points and displaying the machine registers and the contents of
storage. One such aid, DDT, is part of CP/M. It has many uses in the maintenance of
programs. Another, SID, is available as a separate product from Digital Research, and
other debugging tools are sold by other publishers.

Using DDT

DDT, and its bigger brother SID, act in many ways like interpreters of machine
language. They control the machine and execute the machine instructions of the program

189

190

Assembly Language Programming

being tested one or a few steps at a time. Because the program is under the debugging
aid’s control, you may stop it or step along one instruction at a time, pausing when you
like to examine the state of working storage. These are invaluable aids to finding the
errors in a program; even the most experienced assembly language programmers need
them and the novice would be helpless without them.

DDT is called as a command and will accept the name of a program file it is to load
for testing:

DDT fileref

The operand may be omitted; if it is given it must be a complete fileref naming a .HEX or
.COM file.

DDT loads itself over the CCP, just below the BDOS in working storage. It changes
the BDOS jump address at location 05h to point to its own beginning, so that programs
that use all of storage won’t use the storage DDT is in. It then loads the named program at
its usual origin and awaits further commands.

DDT supports commands to display the contents of storage as machine instructions
or as bytes and characters, commands to trace one or several steps of the program, and
commands to run the program until it reaches some particular address. The CP/M
document CP/M Dynamic Debugging Tool User’s Guide contains a good introduction to
the commands that DDT supports, as well as a worked example of how DDT can be used
to trace and debug a program. If you’ve never used DDT, it would pay you to type in that
example program and work through the example at the terminal.

Applying Patches

DDT is the command that is used to apply fixes to programs for which you do not have
the source. Such fixes are stated as changes to be made in the byte values of a program;
you learn of them from the publisher of the program.

In order to apply a patch you call DDT with the name of the program to be fixed.
You then display the locations that are supposed to be changed and verify that they
contain what the publisher said they should contain. You then use DDT commands to
replace those values with the corrected values, and end DDT. The result is that the copy
of the program now in storage is corrected, whereas the program in the .COM file on disk
is still in error.

THE SAVE Commanp. After you've used DDT to prepare the corrected version of a
program, the altered program remains in storage. It will be overwritten by the next
command to be loaded into the TPA. Before that happens you must save the new version
of the program with the SAVE command, whose form is

SAVE size fileref

The SAVE command is part of the CCP (if it had to be loaded from disk, it would
wipe out the altered command in storage). Its first operand is the size of the program to be

Debugging Aids

saved. The size is a decimal number of pages, where one page is a unit of 256 bytes. The
size is easily calculated. It is the decimal equivalent of the most significant byte of the
program’s ending address, or one less than that if the address ends in 00h. DDT displays
the program’s ending address when it loads the program.

The SAVE command writes the given number of pages (i.e., twice that number of
standard 128-byte records) to the file given as its second operand. It begins writing with
location 0100h, the start of the TPA. The result is a new file containing a copy of the
program as you altered it with DDT,

EXAMPLE 12-3
DDT used to patch a message in the STAT command. After the program has been altered in
storage, the SAVE command is used to write a copy of it to a new .COM file.

A>stat a:dsk:

A: Drive Characteristics
4800: 128 Byte Record Capacity
600: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
128: Checked Directory Entries
128: Records/ Extent
l6: Records/ Block
64: Sectors/ Track
2: Reserved Tracks

A>ddt stat.com

DDT VERS 2.2

NEXT FPC

L1580 0LOO

-d028e,0294

028E 53 65 Se

0290 €3 74 6F 72 73 ctors
-5028e

028BE 53 52

028F 65

0290 B3

0291 74 &f

0292 6F 72

0293 72 64

0294 73 .

-d028e,0294

028E 52 65 Re

0290 63 6F 72 64 73 cords
_go

A>save 21 nstat.com
A>nstat a:dsk:

A: Drive Characteristics
4800: 128 Byte Record Capacity
600: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
12B: Checked Directory Entries
128: Records/ Extent
1l6: Records/ Block
64: Records/ Track (note change)
2: Reserved Tracks

191

192

Assembly Language Programming

AN EXAMPLE OF A PatcH. Earlier we commented that the STAT command’s disk
information display says Sectors/Track when it really is displaying the number of
128-byte standard records per track—not necessarily the same thing. The message text is
a constant in the body of the STAT program, and we can change it with DDT. Here are
the instructions for the patch:

Around location 028E find the ASCII bytes for “Sectors” (in hexadecimal, 53 65
63 74 6F 72 73). Change those bytes to read “Records” (52 65 63 6F 72 64 73).

The complete process of applying the patch is shown in Example 12-3. The STAT
command is tried out, for reference. DDT is called with STAT.COM as its operand.
After loading the file DDT reports that the next available byte in working storage (the
address of the byte after the last byte of STAT) is 1580h.

DDT’s display command is used to verify that the expected values are present, then
its substitute command is used to replace them with new values. The go-to-zero
command ends DDT.

Since the end of the program was at 1580h, we need to save 21 (the decimal
equivalent of 15h) pages. In order to test the change before making it permanent, we
want to save the altered program under a different name. Hence the SAVE command is
given operands of 21 and NSTAT.COM. The newly created NSTAT command works as
expected.

PATCHING A REAL ProBLEM, Here’s a second patch example. In CP/M 2.2 the
SUBMIT command rejects a file if it contains a control character signal like “"Z.”
SUBMIT is supposed to convert that into a control-z byte in the submitted command. It
turns out that SUBMIT will accept ““z,” but that isn’t compatible with previous versions
of the system or with MP/M or CP/M-86.

This is the official fix for the problem. Use DDT to load SUBMIT.COM. Use the L
subcommand to display the instructions beginning at 0441h. It should show

0441 SUI 61
0443 STA OE7D
.etc

(If it does not, don’t continue with the patch.) Use the S subcommand to alter the byte at
0442h from 61h to 41h. End DDT and save the updated command.

It's best to save the altered command under a different name and test it. When
you're sure that the patch worked and didn’t cause any new problems, you can erase the
original command and rename the patched version.

Chapter 13

BDOS Services for

Applications

SERVICE REQUEST CONVENTIONS

CONSOLE INPUT REQUESTS
Service 1: Get a Byte
Service 10: Get a Line
Service 11: Console Status
The CISUB Library

CONSOLE OUTPUT REQUESTS
Service 2: Write a Byte
Service 9: Write a String
The COSUB Library

FILE-HANDLING CONCEPTS
The Idea of the Default Drive
Service 25: Get Default Drive
Service 14: Set Default Drive
The File Control Block

FILE INPUT REQUESTS
Service 15: Open Existing File
Opening the Default FCB
Service 26: Set Buffer Address
Service 20: Sequential Read
End of File
The TF Command

194

195
196
196
197
197

199
199
200
200

202
202
202
202
202

204
204
205
205
206
206
206

193

FILE OUTPUT REQUESTS 207
Deleting an Existing File 207
Service 22: Make a File 208
Service 21: Sequential Write 209
Service 16: Close a File 209
The FT Command 210
The SEQIO Library 212

DIRECT ACCESS 212
Service 34: Direct Write 212
Files with Holes 213
Service 33: Direct Read 213
A Hazard of Direct Input 213
Service 40: Write with Zero Fill 214
Service 36: Get Direct Address 214

This chapter describes the BDOS service requests that are useful in writing application
programs. After looking at the programming conventions used in making service
requests, we'll examine the requests for console 1/0 and file 1/0 in detail.

SERVICE REQUEST CONVENTIONS

SErvICE REQUEST NUMBERS. CP/M 2.2 provides 38 different service requests. They
are numbered sequentially from 1 to 37, plus 40 (38 and 39 exist only in MP/M). MP/M 2
adds 15 more (numbers 41-48 and 100-106). The CP/NET software, when installed in a
CP/M system, adds six more requests (numbers 64-69). CP/M-86 contains 10 unique
requests (50-59). All these requests are described in the Reference section of this book.

MAKING SERVICE REQUESTS. All requests are accessed in the same way: the number
of the request is set in register C, a parameter is placed in the DE register pair, and a call
is made to the BDOS jump at location 0005h. A few calls need no parameter in DE.
When control returns to the program there is usually a return value in register A. A few
requests return a value in the HL pair as well.

MAKING REQUESTS IN CP/M-86. The method of making a service request in CP/M-86
is only slightly different. The number of the request is placed in BL and the parameter is
passed in DX. The BDOS returns byte values in AL and word values in BX. A CP/M-86
program calls the BDOS by executing INT 224 rather than by a jump.

REGISTER PRESERVATION. The BDOS does not preserve the contents of any register.

You cannot assume anything about the contents of the registers following a service call,

except for those specified to contain a return value. This makes it awkward to place

service calls in the main line of your code. Often you’ll have allocated registers carefully —
194 to certain functions and a service call upsets those plans.

Service Request Conventions

One approach to the problem is to enclose a call to BDOS within a subroutine that
also saves some registers by pushing them on the stack before making the service
request. But that is a lot of trouble to achieve a few push and pop instructions.

Tue SERVICE Macro. Figure 13-1 shows another approach. The SERVICE macro
makes it possible to place service requests at any point in a program without worrying
about register preservation. It saves the BC and DE registers, and the HL register as
well, except for the five services that return values in it. If a second operand is given, the
macro assumes that it names a value that should become the parameter of the service call.
In that case it loads the DE register with the parameter value. If no operand appears, the
macro assumes you have loaded the parameter into DE already. Following the service
request it restores the registers it saved.

Tue Z80 Recisters. The BDOS is written in 8080 machine language and will never
alter the index and alternate registers that are unique to the Z80 CPU. Normally the BIOS
doesn’t alter those registers either, or it preserves them if it does. You should check with
your vendor; it is likely that your BIOS does not change the Z80 registers. If so, you need
not preserve them over a service call.

CONSOLE INPUT REQUESTS

Many useful applications can be built that require no console /O at all. When it is
required, console input should be designed with consideration for the operator in mind.
Programs such as the disk formatter used as an example in Chapter 8, which require the
user to type one-character responses to crucial questions and can’t be automated with
XSUB, are the bane of the experienced user’s life. Abused though it may be, console

SERVICE MACRO: CALL BDOS FOR A SERVICE, SAVING
ALL REGISTERS EXCEPT A AND SOMETIMES HL. LOAD
DE REGISTER WITH PARAMETER IF ONE IS GIVEN.

¥
S

ERVICE MACRO ?5,?DE
PUSH B ;i SAVE BC AND ..
PUSH D i «.DE ALWAYS.
IF (?5 NE 12) AND (?S5 NE 24) AND (?S NE 27) AND (?5 NE 29) AND (2?5 NE 31)
PUSH H ; SAVE HL WHEN BDOS DOESNT RETURN IT
ENDIF
IF NOT NUL ?DE
LXI D,?DE i LOAD PARAMETER
ENDIF
MVI Cc,?8 i SET SERVICE NUMBER
CALL 0005H ;i AND CALL BDOS
IF (?5 NE 12) AND (?S NE 24) AND (?S NE 27) AND (?5 NE 29) AND (?5 NE 31)
POP H i RESTORE HL IF IT DOESNT HAVE THE RESULT
ENDIF
POP D ;i RESTORE DE, BC ALWAYS
POP B
ENDM

TIGURE 13-1
~— The SERVICE macro makes it simpler to issue a service request, and it handles register
preservation. 195

BDOS Services for Applications

input is sometimes necessary, and the several service requests that deal with it make a
good introduction to service requests in general.

Service 1: Get a Byte

OPERATION OF SERVICE 1. Service 1 is simplicity itself. Call the BDOS with 01h in
register C, and receive the next character typed in register A. The system will be
suspended until the user presses a key.

SERVICE 1 AND CONTROL CHARACTERS. According to the CP/M documentation the
BDOS checks the received character for control-p or control-s (console copy or stop
scrolling respectively). CP/M 2.2 may check; if so, it does nothing with what it finds.
This is easily shown with a program so simple you might enter it with DDT:

ORG 0100H (in DDT, a100)

MVl C1
CALL 5
JMP 100H
END

The program simply soaks up console input. If you run it, you'll find that none of the
usual control characters have any effect. Control-p does not switch on console copy.
Control-¢ does not cancel the program with a warm start; you’ll have to use reset to kill it.
If you add output to the program (as we'll soon see how to do), you can demonstrate that
control-s doesn’t suspend it.

Use oF SErvicE 1. The user doesn’t get a chance to correct a typing error. If the wrong
character is typed, your program will have the data and be off and running long before
the operator’s finger has reached the bottom of the keystroke. Therefore, it is good
practice not to initiate anything irrevocable in response to input from Service 1. Ask for
confirmation with another input, or use Service 10 in the first place.

Service 10: Get a Line

Service 10 requests line input. It requires the address of a line input buffer as a parameter
in register DE. This buffer consists of a byte giving the maximum amount of data the
buffer will hold, a byte in which the BDOS will return the amount actually received, and
a series of bytes in which a complete line of user input will be placed.

OpPERATION OF SERVICE 10. When called for service 10, the BDOS will begin

collecting characters from the CON: logical device and placing them in the buffer.

During this process the BDOS will note and respond to all of the usual control characters.
196 When the user enters either a CR or an LF, the line is complete. The count of bytes is

Console Input Requests

placed in the buffer and control returns. The terminating character (CR or LF) is not
placed in the buffer nor is it counted in the data.

UsE oF SERVICE 10. Service 10 allows the user to correct typing errors with control-x
and backspace, and to control the system with control-p, -s, and -c. It is the only service
that can receive a line of input from a submit file via the XSUB program. Service 10 is
therefore the preferred console input method for all applications. The only exceptions
would be those that require detailed control of the terminal, such as full-screen editors
and games.

Service 11: Console Status

If your application engages in a lengthy spell of processing (say, reading a file of several
thousand records), it would be nice to have some way of making it stop. The reset key
will do it, of course, but it doesn’t give the program a chance to clean up. If the reset
button is the only way to stop your program, some day that button will be pressed at just
the right time to demolish a file directory.

OPERATION OF SERVICE 11, Service 11 offers a way to check the keyboard for an abort
request; it is undoubtedly the way that PIP checks for one. Upon return from service 11
register A contains 00h if no key has been pressed since the last console input. If a key

- has been pressed, the BDOS returns a nonzero value (the CP/M documentation says the
value is FFh, but the author has seen one system that returned 01 h).

Use oF SErvICE 11. You can imbed a call to service 11 at the center of your processing
loop. If a key has been pressed, you may either abort as PIP does (tidying up all files
behind you), or call a routine that asks if the user really meant it, going on with the
program if the user did not. The latter course has two advantages. First, the program
can’t be aborted by an accidental brush of the keyboard. Second., it lets the nervous user
punch a key just to make sure the program is still alive. It’s often hard to tell a hung
program from one that is just working hard.

The CISUB Library

Figure 13-2 shows the contents of CISUB, a macro library whose contents illustrate the
use of the console input services. It contains no aids for service | (that is easily done with
a SERVICE 1 macro call). It does contain a macro aid to the use of service 1 1.CITEST
takes as its operand a label to be called in the event that a character has been typed. That
routine would handle the abort procedure, returning if no abort was necessary.
CISUB also illustrates the use of service 10. It contains a macro, CIBUFF, that
sonstructs a line input buffer with an additional byte ahead of it. The CISUBM macro
~ generates three subroutines. The first, CIREAD, issues service request 11 to fill a buffer 197

BDOS Services for Applications

R CISUB.LIB : CONSOLE INPUT AIDS

MACRO TO CREATE A LINE BUFFER WITH ONE ADDITIONAL e’
BYTE USED BY THE CIGETC SUBROUTINE

) ~e =0 = e =

IBUFF MACRO ?SIZE

DB 0 ; INDEX FOR CIGETC

DB ?81ZE ; BUFFER SIZE FOR BDOS

DB 0 ; RETURNED LENGTH OF DATA
DS ?5IZE ; SPACE FOR THE DATA

ENDM

MACRO TO TEST IF A KEY HAS BEEN PRESSED AT THE
TERMINAL. OPERAND IS THE LABEL OF A TERMINATION

’
¥ OR USER-COMMUNICATION ROUTINE.
’
CITEST MACRO ?CALL
SERVICE 11
ORA A ; HAS A KEY BEEN HIT?
CNZ ?CALL ; IF SO, CALL GIVEN ROUTINE.
ENDM

SET OF SUBROUTINES FOR CONSOLE LINE INPUT

ISUBM MACRO

THE CIBUFF MACRO)
INPUT: HL --> THE LINE BUFFER (PRESERVED)
OUTPUT: BUFFER FILLED. A = NUMBER OF BYTES, Z-FLAG SET IF

;
c
; CILINE: READ A LINE OF INPUT TO A LINE BUFFER (DECLARED WITH
;
; THE INPUT WAS A NULL LINE.

¢

ILINE EQU S
PUSH H : SAVE BUFFER ADDRESS
MVI M,00 : ZERO INDEX BYTE FOR CIGETC.
INX H ; HL --> BUFFER FOR BDOS el
XCHG ; PUT IN DE FOR BDOS,
SERVICE 10 : ..FILL THE BUFFER
XCHG ; RECOVER CALLER”S DE
INX H : HL ==> LENGTH OF DATA
MOV A, M : ..PUT IT IN A
ORA A : SET Z-FLAG FROM LENGTH
POP H : RESTORE HL-->BUFFER
RET

CIGETC: GET NEXT BYTE FROM A LINE BUFFER

; INPUT: HL --> THE LINE BUFFER (PRESERVED)
; OUTPUT: A = NEXT BYTE. IF THERE IS NONE, A = CR AND
H THE Z-FLAG IS SET.
r
CIGETC EQU s
PUSH B ; SAVE A WORK REGISTER
PUSH H ; AND THE BUFFER ADDRESS
MOV A,M ; COPY INDEX BYTE,
INR M : ..AND STEP IT FOR NEXT TIME
INX H ! INX H ; HL --> LENGTH OF DATA
CMP ; INDEX < LENGTH?
Jc CIGETCZ ; (YES, DATA REMAINS)
MVI A,CR ; NO, RETURN A CR
JMP CIGETC3
CIGETC2 MOV C,A + COMPUTE OFFSET TO DATA FROM HL:
MVI B,0 :+ (HL+1)-->FIRST EYTE IN BUFFER
INX B
DAD B ; HL --> WANTED BYTE
FIGURE 13-2

CISUB.LIB contains subroutines that simplify the use of service request 10 (read a line from __
the console), and macro CITEST that uses service 11 for an abort test based on console
198 status,

Console Input Requests

MOV A.M 1 PICK IT UP

CIGETC3 CPI CR i SET Z-FLAG FOR END OF LINE
POP H ! POP B ; RECOVER REGISTERS.
RET

; CIGETNB: GET NEXT NON-BLANK FROM A LINE BUFFER
;i INPUT: HL =-> BUFFER (PRESERVED)
i OUTPUT: AS FOR CIGETC, BUT NEVER A BLANK.

éIGETNB EQU H

CALL CIGETC ; GET A BYTE,
RZ : ..EXIT IF END OF LINE
CPI BLANK ; IF IT ISN“T BLANK,
RNZ i ++RETURN
JMP CIGETNB

FREEL S END OF CISUB.LIB
ENDM

FIGURE 13-2 (Continued)

built by the CIBUFF macro. The second, CIGET, returns the next byte from that buffer,
or a CR character and the Z flag set if there are no more.

The CIGETNB subroutine takes bytes from the buffer until it finds one that is not
blank (or finds the end of the input). It allows you to ignore blanks in the input line.

CONSOLE OUTPUT REQUESTS

Unlike console input, console output is needed in almost every program, if only to tell
the user that something has gone wrong. The console output requests are easy to use.

Service 2: Write a Byte

OPERATION OF SERVICE 2. Service request 2 takes as its parameter a single byte in the
E register (the contents of D are ignored). That character is displayed at the device
currently assigned as CON:. If the character is a tab, the BDOS expands it into a string of
one to eight spaces according to its knowledge of where the cursor is relative to the
standard 8-column tab stops. It is possible for the BDOS to be wrong about this. If
you’ve been moving the cursor about with escape sequences (which the BDOS, being
device independent, doesn’t recognize), then tab expansion will be in error. Avoid
writing tabs in that case.

SERVICE 2 AND COoNTROL CHARACTERS, The effect of control-s and control-p during
service 2 output can best be explained by an example. Assemble this program:

ORG 0100H
TOP MVI E'X

MVl G2

CALL 5

LXI H,0

199

BDOS Services for Applications

SPIN DCX H
MOV AL
ORA H -
Jz TOP
JMP SPIN

The program types Xs at the terminal with a pause between each. Run it and experiment
with control characters. You’ll find that control-s, if it is the first input, suspends output
as it should. While output is suspended control-c will cancel the program. If you enter
any character other than control-s, it is ignored, and thereafter control-s has no effect.
This odd behavior is not what the CP/M documentation might lead one to expect. Atany
rate, while service 2 output is under way control-p will not initiate console copy, nor will
control-c alone cancel the program.

Service 9: Write a String

OPERATION OF SERVICE 9. Service 9 provides an easy way to write a complete
message to the console. The parameter in register DE is taken to be the address of a
sequence of characters terminated by the ASCII value 24h (a dollar sign in the United
States, or another currency symbol elsewhere). The string, up to but not including the
terminator, is sent to CON:. The effect of control characters during output is much the
same as with service 2.

Usk oF SERVICES 2 AND 9. The user can’t cancel the program with control-¢ while it is
writing to the console. A program that writes a lot of data to the terminal without pausing
for service 10 input ought to include an abort test (such as the CITEST macro).

StrRING TERMINATORS. The choice of 24h as a string terminator was an unfortunate
one; as a result, service 9 can never be used to write a string that contains a currency
symbol as part of the data. You might wonder why that terminator was chosen when
there were at least four other choices that could have been made (the null byte 00h or the
EM, ETX, or SUB control characters). Such speculation is irrelevant, inasmuch as the
choice was made and couldn’t be changed now without causing immense problems for
existing programs.

Two other conventions have arisen among CP/M programs for terminating strings
of output. One convention, probably deriving from the practices of the C programming
language, terminates strings with the null byte, 00h. The second marks the last character
of a string by setting its most significant bit to 1. Each has its advantages, and each
requires a subroutine in the program to handle it.

The COSUB Library

Figure 13-3 shows the contents of a macro library that contains a set of console output —~
subroutines. A call to the COSUBM macro will generate the subroutines at that point in
200 the program.

Console Output Requests

COSUBM MACRO

P COSUB.LIB -- CONSOLE OUTPUT SUBROUTINES
“ r
= ; SUBROUTINE TO WRITE [A] TO CONSOLE
; ALTERS ONLY A AND F
cour EQU $
PUSH B ! PUSH D | PUSH H
ANT 7FH ; CP/M EXPECTS BIT 7 = 0
MOV E,A ; PUT DATA WHERE CP/M EXPECTS
MVI c,2 ; CONSOLE OUTPUT FUNCTION
CALL 0005H
POP H ! BOP D | POP B
RET
; SUBROUTINE TO WRITE RETURN, LINEFEED TO CONSOLE
: ALTERS NO REGISTERS
COCRLF EQU $
PUSH PSW
MVI A,CR ; THE RETURN..
CALL cour
MVI A,LF : ..THE LINEFEED.
CALL couT
FOP PSW
RET
; SUBROUTINE TO WRITE A SPACE TO THE CONSOLE
: ALTERS NO REGISTERS
"
COSPACE EQU s
PUSH PSW
MVI A,BLANK
CALL cour
POP PSW
~— RET
; SUBROUTINE TO WRITE BYTES ADDRESSED BY HL,
; UP TO AND INCLUDING ONE WITH BIT 7 = 1
: ALTERS A&F, STEPS HL TO LAST BYTE OF STRING.
r
COSTR EQU $
MOV A,M ; PICK UP BYTE TO GO
CALL couT : PRINT IT
MOV A,M ; LOOK AGAIN, AND
RLC i ..CHECK BIT 7:
RC : ..RETURN IF ON
INX H ; ELSE POINT TO NEXT,
JMP COSTR ; .. AND CONTINUE
r
PR ok ok K ok END OF COSUB.LIB
ENDM
FIGURE 13-3

COSUB.LIB contains routines to simplify console output, The COSTR routine illustrates the
use of a convention for ending strings other than the one used by service request 9,

The COUT subroutine is nothing but a call on service 1, except that the character to
be displayed is passed in the A register. That is usually more convenient than using the E
register as the service request requires. COUT preserves all registers.
The COSPACE and COCRLF subroutines allow you to write those most common
~— characters, a space and a CR, LF pair, without modifying any registers at all.
The COSTR subroutine writes a string that is terminated by a byte whose most
significant bit is set to 1. 201

BDOS Services for Applications
FILE-HANDLING CONCEPTS

The greatest number of CP/M service calls are concerned with operations on the file
system. The parameter for each of these calls is the address of an FCB, a 36-byte field
that reflects the state of a particular file. After reviewing an important CP/M concept,
we'll talk about the use of that data structure.

The Idea of the Default Drive

Back in Chapter 5 we spoke of the default drive. That was the drive that was named in the
CCP’s prompt, and whose drivecode was used wherever the user didn’t supply one. The
concept of the default drive runs throughout all your dealings with the file system.

When you operate on a file with one of the service requests we’ll look at later, the
file is assumed to exist on the drive that is currently the default. You may specify another
drive in the FCB; if you do, the drive you name is made the default before anything else is
done. In other words, the BDOS looks at only one drive at a time, and that drive is
automatically made the default.

Service 25: Get Default Drive

Service 25 returns a number indicating the current default drivecode in register A. This
can be used to find out which drive the user knows as the default, or saved to reset the
correct drive at the end of the program. The returned number encodes the drive; 0 stands
for A:, 1 for B:, and so on to OFh for P:. This is different from a similar code in the FCB,
as we’ll see.

Service 14: Set Default Drive

Service 14 sets the drive that is to be the default, exactly as a drivecode command does.
The parameter to service 14 is a drive number in register E. The number returned by
service 25 may be used for the parameter.

The File Control Block

The FCB holds a copy of the information contained in a file’s directory entry. Its initial
byte and the 4 bytes at the end are not part of the directory; they are used only within
programs. There is a map of the FCB in Figure 13-4. Let’s take a tour of its fields.

00h: THE DRIvECODE, The first byte of an FCB is a drivecode byte. If its value is 00h,

then any operation using that FCB will be directed to the drive that is currently th

default. If the byte is not zero, the operation will go to a specific drive. The drive is coded
202 as a number: 1 stands for A:, 2 for B:, and so on. 1+'X'-'A" is an assembler expression

File-Handling Concepts

00 0l 02 03 04 05 06 07 08 09 0A 0B 0OC 0D OE OF

N
I 1 I | | L L | 1
Drivecode Filename Filetype Extent Sl 52 Record
count
10 IF
=— Data map —=
20 21 22 23
| 1
Current Direct
record address
FIGURE 13-4

A map of the File Control Block (FCB), the storage copy of a directory entry used in most file
service requests.

that will produce this code for any drive letter X. Note that this encoding of the drive is
one greater than the code used by services 25 and 14,

01h 1o 08h: THE FILENAME. The filename comes next, as eight ASCII characters.

The name is left justified in the field and padded on the right with blanks. The most
" significant bit of each of these characters is ordinarily zero, as with any ASCII byte.

However, those bits are sometimes used as indicators, as we'll see in a later chapter.

09h To 0Bh: THE FiLeTYPE. The filetype follows the filename (there is no dot
between them in the FCB). The filetype is left justified and padded with blanks.
Therefore, a file with no filetype actually has a filetype of three blank characters. The
most significant bits of each filetype character are normally 0, but in some advanced
service requests we'll look at later they are used by CP/M as indicators.

0Ch: Tue ExTenT NUMBER. We discussed file extents in an carlier chapter. We said
that one directory entry can control a certain amount of space (usually 16 KB). Files
larger than that have a directory entry for each extent. Byte OCh contains the number of
the file extent currently being processed. It is 00h in the first extent of a file. 01h in the
next, and so on up to 1Fh, That provides for 32 extents, the maximum in CP/M 1.4.
CP/M 2 can handle more than 32 extents. In extents with higher numbers the overflow
beyond 1Fh is kept elsewhere in the FCB.

ODh: THE S1 Anp S2 NumBERs. The 2 bytes at 0Dh and OEh in the FCB are used by
BDOS for its own purposes. The uses to which these bytes are put are not defined, may
change in future versions of the system, and probably differ between CP/M and MP/M.

~—OFh: Tue Recorp Count. The byte at OFh contains a count of the number of
standard records controlled by this extent. The STAT command computes the number of 203

204

BDOS Services for Applications

records in a file by adding up the record count field of each directory entry for the file. If a
file is built with direct access writes and contains holes (unallocated space), the record
count byte may be inaccurate. '

10h 1o 1Fh: Tue DaTA MAP. The 16 bytes from 10h to 1Fh contain a list of the
allocation blocks controlled by this extent of the file. This is the most important
information in the FCB. These numbers specify the disk locations where the file’s data
are to be found. The data map should be left strictly alone. If you alter the map before
closing the file, the results can be catastrophic. The information from the directory ends
here; following bytes exist in storage only.

20h: Tue CurrenT RECORD. The byte 20h into the FCB is used by the BDOS as a
count of the number of standard records that have been read or written in this extent of the
file.

You are expected to set the current record number to 00h when opening a file for
sequential access. Then the first access will produce the first record of the extent. The
current record byte will be incremented to 01h, which will cause the next service request
to access the second record, and so on. When the current record equals the record count
byte (on input) or the capacity of the extent (on output), the BDOS knows that the extent
is finished.

21h 1o 23h: ReEcorp AppRress. The last 3 bytes of the FCB were added in CP/M 2.
Programs written for earlier versions may not have provided for this extra space (tiny c,
for instance, dedicated these bytes to other purposes). Such programs cannot use the
direct access service requests.

Direct access to any standard record of a file is done by setting a 24-bit integer in
bytes 21h, 22h, and 23h. 21h is the least significant byte and 23h is the most
significant. This is the reverse of what you might expect, but it fits well with the
operation of the 8080’s instructions. After the address has been set a request for a direct
access operation is made; the BDOS reads or writes the record whose number is
specified.

In CP/M 2 there cannot be more than 65,536 records in a file. In that system the byte
at 23h is always zero. MP/M 2 supports larger files. It will allow the third, most
significant, byte to contain a value as large as 03h.

FILE INPUT REQUESTS

Reading from a file can be almost as simple as reading from the console. Three steps are
required: open the file, read its data, and recognize the end of the data.

Service 15: Open Existing File

OPERATION OF SERVICE 15, Service 15 requires the address of an FCB in register DE.
The BDOS uses the drivecode byte to select a drive. It looks up a directory entry for the

File Input Requests

file and extent named in the FCB. If it is found, the data map from that directory entry is
copied into the FCB and the file is ready for reading.

THE DIRECTORY SEARCH. The first 15 bytes of the FCB affect the directory search.
The drivecode decides which drive’s directory will be searched. If it is 00h, the directory
of the current default drive will be used. If not, the drive specified by the drivecode byte
will be made the default drive.

AMmBIGUOUS FILEREFs. The filename and filetype must have been set up properly (left
Justified and padded with blanks). The search will fail if they are not. However, the
fileref in the FCB may be ambiguous. If it contains question marks, the BDOS will open
the first directory entry whose fileref matches the reference. This is true only in CP/M
and MP/M 1. In MP/M 2 the fileref must be explicit.

THE EXTENT NUMBER. The extent number byte takes part in the directory search as
well. You should set this byte to 00h before the service request so that the first extent
entry will be found. You could set it to, say, 01h and so open the second extent of the file
(assuming there is one) instead of the first. This is how direct access was done prior to
version 2.0 of CP/M. However, the highest extent you can open in this way is the 32nd.
It makes more sense (and yields better performance) to use the direct access services
now.

THE S1 ANp S2 ByTES. The S1 and S2 bytes participate in the file search. The only
thing that you may be sure of about the function of these bytes is that, if they are zero, the
first extent will be found.

Opening the Default FCB

If your program takes a fileref as its first operand, you may use the FCB prepared at 5Ch
in low storage. The CCP sets it up ready to open. Check that the byte at 5SDh—the first
byte of the filename—isn’t blank (if it is, no operand was given). Then simply request
service 15, passing the address of the default FCB in register DE. This convenient
feature makes it very easy to write programs that process a single file.

Service 26: Set Buffer Address

Before reading a file you must tell the BDOS where the data are to be put. This is done
with service 26, which takes the address of a record buffer in register DE. Until another
service 26 is done all file access requests will use that buffer.

USING THE DEFAULT BuFFER. The CCP sets location 80h as the buffer address before
entering your program. If you don’t change the buffer address with a service 26, all file
accesses will use that buffer from 80h to FFh. This feature simplifies the job of writing
simple programs. You must remember to process any operands from the command tail

205

206

BDOS Services for Applications

before doing any file accesses through the default buffer, as that is also the place where
the CCP stored the command tail.

Service 20: Sequential Read

OpERATION OF SERVICE 20. Once the file has been opened and the buffer address set,
you may read data. Service 20 requests a standard record from a file. The address of the
FCB is passed in register DE and a return code is returned in register A (if your CP/M or
MP/M documentation says a “directory code” is returned in register A, correct it; that is
not the case),

Tre RETURN CobpE. If the return code is 00h, then a copy of the current record has
been placed in the buffer, ready for processing. The current record byte has been
incremented and, if that made it equal to the record count byte, the BDOS has opened the
next extent of the file and copied its data map into the FCB. If the code in register A is
nonzero (don’t assume it will be FFh), no more records are available. This is physical
end of file; it can happen on the first read request because a file can contain zero records.

End of File

PuvsicaL Enp oF FiLe. CP/M has two conventions for end of file. The first is the
physical end of file, which is signaled by a nonzero value in register A following service
20. That means that there is no next record in sequence. That could happen because there
are no more records in the file, or it might be that this file was created with direct access
and has a hole in it (a sequence of records that have never been written and hence were
never allocated).

Locicar Enp oF FILE. In a file of ASCII text the SUB control character signals the
end of data. SUB usually occurs in the last standard record of the file, but it might occur
in the next to last record, or indeed anywhere. Many programs fill each output buffer
with SUB characters before putting data in it. The result is that the last part of the last
record of a file is filled completely with SUB bytes. That is not always done; sometimes
there is only a single SUB character, followed by unpredictable values to the end of the
record.

If the last useful byte of an ASCII file is also the last byte of a record, some
programs don’t bother to write an additional record containing a SUB. Therefore, the
end of an ASCII file can be signaled either by physical end of file or by the appearance of
a SUB character in the data.

The TF Command

Figure 13-5 shows the complete source of a simple program TF (for Type File). It does
what the TYPE command does: it writes the contents of an ASCII file at the console. TF

File Input Requests

h KLk W TF : A PROGRAM TO TYPE FILES

MACLIB CPMEQU
MACLIE PROG

MACLIB COSUB
MACLIB CISUB

INCLUDE STANDARD NAMES
PROLOG, SERVICE MACROS
CONSOLE QUTPUT ROUTINES
CISUB FOR CITEST MACRO

~r me we e

PROLOG 20,TF i SET UP STACK
TF EQU $
LDA CPMFCB+l; FIRST FILENAME BYTE:

CPI BLANK ; NO OPERAND GIVEN?

RZ ALL DONE IF SO.
i
SERVICE 15,CPMFCB ; OPEN THE FILE
INR A ; CHECK FOR ERROR (FFH)
RZ ;i EXIT IF OPEN FAILED
i
TFTOP EQU 5
SERVICE 20,CPMFCE ; READ A RECORD TO 0080H
ORA A ¢ ..IF THERE IS5 ANOTHER
RNZ i (THERE WASN“T -- EXIT)

CITEST TFABORT ; ABORT IF A KEY”S BEEN HIT

LXI H,CPMBUFF ; START OF BUFFER,

MVI B,L28 i . .AND ITS LENGTH.
TFLOOP MOV A,M i NEXT FILE BYTE..

CPI EOF 3 IS IT AN EOQOF MARK?

RZ 1 QUIT IF SO,

CALL couT 7 «.ELSE TYPE IT AND

INX H :+ POINT TO NEXT BYTE.

DCR B

JNZ TFLOOP ; DO ANOTHER IF THERE IS ONE,

JMP TFTOP i ++0OR GET NEXT RECORD
TFABORT RET ;7 EXIT WHEN CITEST FINDS A KEY HIT.
; SUBROUTINES:

COSUBM

END

FIGURE 13-5
The TF (for Type a File) command demonstrates sequential input using the default FCB and
default record buffer, and the use of CITEST for an abort test.

uses the default FCB prepared by the CCP and the default I/O buffer. It uses the macro
libraries shown earlier; the PROG library contains the PROLOG2 and SERVICE
macros seen earlier. TF watches for both end-of-file signals and terminates when cither
OCccurs.

FILE OUTPUT REQUESTS
Deleting an Existing File

File output is more involved than input. Complications occur upon opening of the file. If
a file of the same name presently exists, it must be erased—otherwise the data written
would simply replace what are already there. If your program wrote more data than the
file held originally, all would be well. If it wrote less, some old data would remain, at

207

208

BDOS Services for Applications

best taking up space to no purpose, and at worst causing errors in the program that reads
the data.

DeLETION PoLicies. File deletion is just as permanent an action as the ERA com-
mand. Generally speaking, it is not a good idea for a program to erase any file unless it
can be sure that doing so will cause no harm. PIP and the CP/M editors have policies that
makes file deletion safer.

It is a CP/M convention that any file whose filetype is .$$$ is a temporary file that
can be erased without warning. Set up the output FCB with the filename requested by the
user, but with a filetype of .$$3$. Your program can delete that fileref without worry.

At the end of the program when the output file has been built and closed, the
program may delete the original file if it exists, and then rename the new output file to
give it the correct filetype. That is the sequence PIP uses. Editors don’t delete an existing
file; they rename it so that it has a filetype of .BAK before they rename the new file to its
correct type.

Another policy is possible: a program can simply refuse to take the responsibility
for file deletion. Such a program would check to see if its output file existed. If it did, the
program would terminate with a message. It would then be up to the user to do the
erasing.

ServicE 19: DELETE A FILE. Service 19 takes an FCB and erases the file named in it.
It returns a signal in the A register, indicating whether or not the file existed (that hardly
seems useful—whether or not the file did exist, it doesn’t afterward!).

SERVICE 23: RENAME A FILE. Service 23 renames a file, just as the REN command
does. The present name of the file is given in the FCB in the normal way. Its new name
must be placed in the same format in the data map space of the FCB, from bytes 11h to
1Bh. The new filename is taken from bytes 11h through 18h, and the new filetype from
bytes 19h through 1Bh.

Service 22: Make a File

After any existing file has been erased, and before output begins, a directory entry must
be created for the file. This is done with service 22. For that service register DE
addresses an FCB with the drivecode, filename, and filetype filled in as usual and other
fields set to zero.

OQPERATION OF SERVICE 22, The BDOS selects an unused entry in the directory and
fills it in from the FCB. The data map in the new directory entry is filled with zeros and
its record count byte contains zero. This indicates that although the new file exists (it can
be listed by DIR and STAT) no space has been allocated to it. If your program terminates
at that point, the file will remain in the directory and STAT will show that it has no
records. Such a file can be opened for input; end of file will be signaled on the first read
request.

File Output Requests

UsE OF SERVICE 22. It is absolutely essential to use service 22 before writing to a file.
During output the BDOS does not check to see if a directory entry exists. You can write

— toanunmade FCB with apparent success for one extent. When the extent must be closed,
either because of a close request or because it is full, an error will occur and the file will
not be recorded in the directory. In MP/M 2 the BDOS will refuse to write to an unmade
FCB.

Service 21: Sequential Write

Once the file has been made, the current record byte set to zero, and the buffer address set
(service 26), you may write in the file. This is done with service 21. Prepare a standard-
record of 128 bytes in the current buffer, put the address of the FCB in register DE, and
issue the request.

ALLOCATING A NEW ExTENT. The BDOS increments the record count of the FCB. If
that becomes greater than the capacity of an extent, the BDOS updates the directory by
copying the FCB’s data map into the directory entry prepared when the file was made. It
then allocates a new directory entry, clears its data map, gives it an extent number one
higher than the prior extent, and copies it into the FCB.

ALLOCATING A NEW BLock. If the record to be written is the first of a new allocation
block, the BDOS allocates a block and records its number in the data map of the FCB.
With these allocation matters taken care of, the BDOS will copy the record from the
current buffer onto disk and return to the program.

ERRORS DURING SEQUENTIAL WRITE. If all this goes correctly, register A will be
returned with a value of 00h (if your CP/M or MP/M book says it will contain a
“directory code,” correct it). Two things can go wrong with a sequential write. The
BDOS may want to open a new extent only to find that there are no free directory entries.
Or, it may look for a new allocation block and find that none are available (that is, that
the disk is full). If either of these things happens, it will return a nonzero value in register
A. (Under CP/M 2.2, a value of 01h says that there are no free directory entries and a
value of 02h says that there is no disk space. MP/M and CP/M-86 may return different
codes.)

Service 16: Close a File

Having written to a file, you must close it. Service 16 closes the file. It requires an FCB
address in register DE. The BDOS looks up the directory entry that matches the FCB (the
one with the same filename, filetype, and extent number) and copies the data map from
the storage FCB into it. Only at that time is the space allocation for the last extent made
~ permanent. 209

210

BDOS Services for Applications

ResuLt oF Not CLOSING. If you do not close the file (if, for example, your program is
aborted with control-c), the last, or only, directory entry will not be updated to show the
data space allocated to it. The file will exist, provided it was recorded by service 22, but
all data written into the last, or only, extent will be lost. The space written to in that
extent will be available for reuse by another file.

The FT Command

Figure 13-6 shows the source of a command called FT (for File Typer). It makes the file
named in the command, then uses the CISUB library shown earlier to read lines of input
from the console. Each input line is copied into a record buffer. When 128 bytes have
been collected, a record is written to the file. When the operator types a null line, FT
closes the file and returns to the CCP. Any of several errors cause it to exit via the
ERROREXIT label defined by the PROLOG2 macro.

The FT command could stand improvement. You might like to enhance it by
making it issue a prompt character before reading each line. You might change the way it
handles existing files; as given, it adopts the simple policy of refusing to erase a file.

P FT : BUILDS FILES BY TYPING
MACLIE CPMEQU ; DEFINE IMPORTANT NAMES
MACLIB PROG ;i PROLOG2, SERVICE MACROS
MACLIB CISUB ; CONSOLE INPUT ROUTINES
MACLIB COSUB i AND OUTPUT FOR COCRLF ONLY
PROLOGZ FT ; SET UP STACK, GO TO FT

i * * * ERROR MESSAGES

i
CCMSG DB “Can““t close the file”,cr,lf,"$"

CWMSG DB “Error on write“,cr,1£,°58"
CMMSG DB “Can”““t make the file”,cr,1f,”$”
FEMSG DB “File exists -- you erase it”,cr,lf,”$”
INPUT CIBUFF 128 ; DEFINE LINE INPUT BUFFER
FT EQU ; START OF PROGRAM

LDA CPMFCB+1

CP1 BLANK ; ANY OPERAND GIVEN?

REZ ; DONE IF NOT

SERVICE 15,CPMFCE :; OPEN FILE AS FOR INPUT

INR A ; DOES FILE EXIST?

JZ FT2 ; NO, CONTINUE,

LXI D,FEMSG ; YES, QUIT WITH A MESSAGE.

JMP ERROREXIT

FIGURE 13-6

FT (for File Typer) takes lines from the console and puts them in a disk file. The many errors
that can be found make it more complicated than TF (FIGURE 13-5). The PROLOG2 macro
simplifies things.

FT2 SERVICE 22,CPMFCB
INR A 7
JINZ FT3 :
LXI D,CMMSG ;
JMP ERROREXIT

FT3 LXI D,CPMBUFF
MVI B,00

r

FTOP EQU $;
CALL COCRLF
LXI H, INPUT
CALL CILINE ;
JZ FTCLOSE ;

r

FTLOOP CALL CIGETC ;
JZ FTEOL ;
CALL FTPUT H
JMP FTLOOP ;

FTEOL MVI A,CR ;
CALL FTPUT :
MVI A,LF :
CALL FTPUT
JMP FTOP H

H
i,

File Output Requests

;7 NEW FILE. MAKE IT.
DID THAT WORK?

YES, CONTINUE.

NO, QUIT WITH A MESSAGE.

;i DE INDEXES DISK BUFFER
;i B COUNTS BYTES IN IT

HERE FOR EACH CONSOLE LINE
CURSOR TO NEXT SCREEN LINE

SERVICE 10 GETS INPUT LINE
ALL DONE IF NULL LINE

NEXT INBYTE

(END OF LINE)

GOT A BYTE, PUT IT IN FILE
« «AND GET NEXT

END OF INPUT LINE, PUT
..CR, LF INTO
..THE FILE

THEN GET NEXT LINE

WHEN A NULL LINE IS RECEIVED FILL THE REST OF THE
BUFFER WITH EOF MARKS, WRITE IT, AND CLOSE FILE.

TCLOSE MVI A,EQOF ; FILL DISK RECORD WITH SUBRS
STAX D
INX D
INR B
JP FTCLOSE
SERVICE 21,CPMFCB ; THEN WRITE LAST RECORD
ORA A 7 DID IT WORK?
JNZ CANTSWRITE

SERVICE 16,CPMFCB

INR A i
RNZ i
LXI D,CCMSG

JMP ERROREXIT

WHEN IT FILLS UP.

e ma e we e

TPUT STAX D

INX D 2
INR B 3
RP H
LXI D,CPMBUFF
MVI B,00 i
SERVICE 21,CPMFCB
ORA A H
RZ H
CANTSWRITE EQU §
LXI D,CWMSG ;
JMP ERROREXIT

COMMON SUBROUTINES

o we me

CISUBM
COSUBM
END

FIGURE 13-6 (Continued)

; CLOSE THE FILE
CHECK SUCCESS,
RETURN TO EPILOG IF OK

SUBROUTINE TO STOW THE BYTE IN A IN THE DISK BUFFER.
DE-->BUFFER, BC COUNTS BYTES IN IT. WRITE THE BUFFER

PUT BYTE IN BUFFER,

STEP BUFFER INDEX,

COUNT BYTES IN THIS RECORD
RETURN IF NOT UP TO 128
+ RESET BUFFER PTR,

. .AND BYTE COUNT

; THEN WRITE RECORD

..AND IF IT WORKED

. .CONTINUE IN PROGRAM

IF IT DID NOT,
;i ..QUIT WITH MESSAGE.

211

212

BDOS Services for Applications

The SEQIO Library

MAC, Digital Research’s macro assembler, is distributed with a macro library called
SEQIO.LIB. This macro library contains a number of aids to the use of sequential files.
The library is described at length in the MAC documentation. It will repay study, as will
any exercise in reading other people’s programs. Although you may not care for its
rather convoluted style, SEQIO.LIB can serve as the basis for a set of sequential file
macros that will make file access nearly as simple as console access.

DIRECT ACCESS

The steps of opening, making, and closing files are the same for direct access as for
sequential operations. Only the operations of reading and writing differ.

Service 34: Direct Write

With service 34 your program may write any standard record that it wishes. The file must
have been opened with service 16 or made with service 22, ensuring that at least one
directory entry exists for it. The record must have been prepared and the buffer address
aimed at it with service 26. Once all this has been set up, your program need only store a
24-bit record number in the direct address bytes 21h to 23h of the FCB and request
service 34. Under CP/M 2, and for all but the largest files under MP/M 2, the record
address will be a 16-bit number and byte 23h will contain zero.

LocATING THE EXTENT. When it receives a direct write request, the BDOS studies the
direct address number in the FCB. From the number it determines the extent of the file in
which that record must fall. If that is not the extent currently open (that is, not the one
reflected by the FCB), the BDOS writes the current extent record back to the directory
from the FCB. It then locates the proper extent record in the directory. If no such extent
record exists, it selects an unused directory entry and initializes it with the fileref and a
data map showing zero space allocation. The desired extent record, new or existing, is
then copied into the FCB.

LocaTinG THE BLock. Once the right extent of the file has been found, the BDOS
determines in which of the allocation blocks in the extent’s data map the record should
fall. If no block has been allocated at that position, the BDOS chooses one and records it
in the FCB.

WRiITING. Finally, the BDOS writes the data record onto disk in the right allocation
block. If that record existed before, its data are replaced.

Direct Access

Files with Holes

It should be clear from the description that a file written with service 34 could have holes
in it. A file might have 10 extent records, each controlling just one allocation block in
each of which you have written just one record. Most of the file simply wouldn’t exist.
The display produced by the STAT command would show peculiar numbers that would
have little meaning. It is best, and usually no more difficult, to create a direct access file
with no holes in it.

The STAT command has an optional operand, $S, which causes it to show the
so-called virtual size of a file, that is, the size the file would have if all of its records
existed.

Service 33: Direct Read

You may read a record from an open file with a direct read. Direct reads and direct writes
may be done alternately to the same file (the same is true of sequential reads and writes,
but there’s no point to doing that). To read a record directly set the buffer address, place a
record number in the direct address bytes of the FCB, and request service 33.

LocatiNG THE ExTENT. The BDOS determines the extent in which that record must
fall. If it is not the current extent (the one reflected in the FCB), the BDOS must locate
the proper extent record and copy it into the FCB. Before doing so it checks to see if the
current extent has been modified. If that’s the case, the BDOS must first update the
directory entry for the current extent.

LocaTinG THE BLock. Having found the extent, the BDOS figures out the allocation
block into which the wanted record must fall and looks at that entry in the extent data
map. From that information it can find the record on disk and read it into the buffer.

NONEXISTENT RECORDS. If either the extent or the block that is needed has not been
allocated, the BDOS returns an error code in register A. That might be a normal event
when using direct access; it means that the record you tried to read has never been
written.

A Hazard of Direct Input

There is one case in which a direct read might return garbage. Suppose that at some time
the first record of an allocation block had been written. That block of records will have
been reserved to the file and the first position in it will have been filled with a record’s
data. However, if service 34 was used to write the record, then nothing can be said about
the other records in the allocation block. If the block has ever been part of another file,
they might contain any sort of garbage.

213

214

BDOS Services for Applications

Now suppose that your program requests a direct read of a record that falls as record
2 of the same allocation block. Will the BDOS inform you that the record you want does
not exist? It will not! The BDOS cannot tell; its directory information tells it only that a
certain allocation block has been made part of this file. It has no record of whether or not
all the records of that block were written.

When a file is written sequentially, or written directly but without holes, this
problem cannot occur because all allocation blocks except the last are filled. The BDOS
can tell the number of records in the last block by taking the remainder after dividing the
record count by the number of records in a block. Such a computation has no meaning for
a file written directly.

Service 40: Write with Zero Fill

Service 40 can be used to prevent the problem just described. If service 40 instead of
service 34 is used for direct writes, the BDOS adds one more feature to the operation, If it
has to allocate a new block in order to write the record, it writes all of the rest of the
records in the block as well, filling them with binary zeros. When a file is written this
way, a direct read that hits upon an unwritten record of an existing block will return a
buffer full of binary zeros. The program that reads the file can test some field of the
record that ought not to be zero to find out whether the record exists.

Service 36: Get Direct Address

THE ConcePT OF AN INDEX. Suppose a file was built with sequential writes, and you'd
now like to process it with direct reads. Let’s say that the data records aren’t necessarily
multiples of 128 bytes in length; they might start anywhere in the file. It won’t be
practical to make direct reads without more information. You can’t give the standard
record number of a data record whose position you don’t know.

What is wanted in such a case is an index, a table that gives the starting position of
each data record in the file. An index is a two-column table that gives the value of some
key value for each record, and opposite the key value the position in the file of the record
that contains that key.

OPERATION OF SERVICE 36. Service 36 allows you to build such an index while
reading an existing file sequentially. What service 36 does is compute the standard
record number of the last record read (sequentially) from the file, and return that number
in the direct address bytes of the FCB.

Usk oF SERVICE 36. To build an index, read the file sequentially. For each data record
note the key value and, through service 36, the file position. Record these items in the
index. Each data record’s position requires four bytes—a 3-byte record address, and a
1-byte offset of its first byte within the record. Having built an index, you can now look
up the position of any record and retrieve it with service 33.

Chapter 14

Services for
System
Programming

TWO USEFUL LIBRARIES
The HEXSUB Library
The DPSUB Library
The XCMD Program

THE DISK DIRECTORY
Reviewing the Directory

CONTENTS OF DIRECTORY ENTRIES
The User Code
The Attribute Bits
The Extent Number
The Record Count
The Data Map

THE SEARCH SERVICES
Service 17: Search First
Service 18: Search Next
Using the Search Requests

DISK SPACE MANAGEMENT
Fundamental Parameters
The Disk Parameter Block
A Hypothetical Disk
Activating a Drive
Space Allocation

216
216
216
216

218
218

220
221
221
223
224
224

224
225
225
225

229
229
232
237
238
239

215

216

DISK FORMATTING AND THE DIRECTORY 241

The Directory High-Water Mark 241
The Reason for E5h 241
The Fill Character Dilemma 241

In this chapter we plunge deeper into the file system. We’ll examine the disk directory in
minute detail and find out how to read and write it from a command program. Then we’ll
study the disk space management method of CP/M 2 and see how to interpret its
parameters from a program. The chapter includes several programs that can reveal the
internal workings of CP/M.

TWO USEFUL LIBRARIES

This chapter is illustrated with several programs, written for the MAC assembler. They
rely on two new macro libraries in addition to the COSUB, CPMEQU, and PROG
libraries we met in the prior chapters.

The HEXSUB Library

The HEXSUB library (Figure 14-1) contains a set of subroutines that display data in
hexadecimal. Its central routines are COHEX, which types the ASCII image of a hex
byte at the console, and HEXBYTE, which returns the ASCII image of a byte in the A
and C registers so it can be inserted in another message. HEXLINE displays some
number of bytes, first in hex and then as characters. HEXDUMP prefixes the display line
with a display of the address of the first displayed byte.

The DPSUB Library

The DPSUB library, shown in Figure 14-2, contains a few routines that manipulate the
16-bit registers of an 8080. As we’ll see, disk space allocation is controlled by para-
meters that are often 16-bit integers. Our example programs become shorter and clearer
when the necessary routines are moved to a library. The DP$ADAD and DP$ADAH
routines add the contents of the A register into the DE and HL register pairs respectively.
DP$LDHA performs an indirect load of the DE register from an address that is the sum
of the A and HL registers. DP$SRLD does a logical right shift of the contents of the DE
register. Many other routines could be added to such a library, but these are the only ones
needed by the example programs.

The XCMD Program

Figure 14-3 contains an example program of the sort we’ll use throughout this chapter.
This program, XCMD, uses the HEXSUB routines to display the default FCB and the

Two Useful Libraries

HEXSUBM MACRO
* * % * HEXSUB.LIB -- HEX DISPLAY ROUTINES FOR MAC ASSEMELER
-- ASSUMES PRESENCE OF COSUB,LIB ROUTINES.

i
P
} SUBROUTINE TO DO AN ADDRESSED DUMP OF ONE LINE. HL-->DATA,
H B HAS LENGTH (SHOULDN"T EXCEED l6 OR SO).

;7 HL IS5 INCREMENTED S0 SUCCESSIVE LINES CAN BE DUMPED,

H BC, DE ARE PRESERVED, AF IS TRASHED.

H

EXDUMP EQU S
CALL HEXADDR ; DISPLAY HL CONTENTS IN HEX,
MVI 7 Wi g :+ THEN A COLON,
CALL COUT
CALL COSPACE ; ..A BLANK, AND ...

.. FALL INTO HEXLINE

SUBROUTINE TO DUMP B BYTES OF HL-->DATA TO CONSOLE
REGISTERS USED AS FOR “HEXDUME”.

b R I TR

EXLINE EQU s
PUSH B ; SAVE PARAMETERS FOR
PUSH H ; ..RE-USE WITH ALPHA PART.
HEXL2 MOV A,M ; CURRENT BYTE..
CALL COHEX ; ..PRINTED IN HEX
CALL COSPACE ; ,.AND A BLANK AFTER,
INX H ; STEP TO NEXT BYTE,
DCR B ; IF ANY,
JNZ HEXL2Z ; (THERE IS)
CALL COSPACE ; TWO BLANKS AFTER HEX DISPLAY.
CALL COSPACE
POP H ; RETRIEVE DATA ADDRESS
POP B ; ..AND COUNT
PUSH B ; PRESERVE COUNT FOR CALLER,
r
HEXL3 MOV a,M ; CURRENT BYTE..
ANI TFH : (LESS ITS BIT 7)
CPI 20H : ..IS IT CONTROL?
Jac HEXL4 ; (YES)
CPI 7FH ; IS IT DEL?
JINZ HEXL5 ; (NO)
HEXL4 MVI A,”.” ; UNPRINTABLE BYTE, USE A DOT.
HEXL5 CALL couT ; PRINT BYTE OR DOT
INX H ; STEP TO NEXT,
DCR B ; ..IF BNY
JINZ HEXL3
POP B ; RESTORE CALLER”S COUNT
RET
; SUBROUTINE TO PRINT HL AS AN ADDRESS IN HEX.
; ALTERS ONLY A, F.
HEXADDR EQU $
MOV A,H
CALL COHEX
MOV AT
CALL COHEX
RET
: SUBROUTINE TO PRINT THE HEX BYTE IN A
; ALTERS ONLY A, F
FIGURE 14-1

HEXSUB.LIB contains subroutines for displaying data in hexadecimal; it is included in most
of the example programs that follow. 217

218

Services for System Programming

COHEX EQU S

PUSH PSW ; SAVE THE BYTE,

CALL HEXLEFT ; GET AND

CALL CouT i «+PRINT LEFT HALF,
-’

POP PSW ; RETRIEVE BYTE,
CALL HEXRIGHT; ..DO RIGHT HALF
CALL cour
RET
HEXLEFT EQU s ; SET UP FOR LEFT NYBBLE
RAR ! RAR ! RAR ! RAR
HEXRIGHT EQU $; DO NYBBLE NOW ON RIGHT
ANI OFH ; ISOLATE 4 BITS
CPI 0AH ; CHECK ALPHA CASE
Jc HEXLR ; [Al< OAH
ADI “A“-3AH ; CORRECT FOR ALPHA
HEXLR ADI ‘0 ; CONVERT TO PRINTABLE
RET

SUBROUTINE TO RETURN THE HEX VALUES OF A,
LEAST SIGNIFICANT HALF IN C, MOST SIGNIFICANT
IN A. USED WHEN ASCII-HEX IS TO BE STORED.

EXBYTE EQU s
PUSH PSW ;i SAVE THE BYTE,
CALL HEXRIGHT; ..PUT THE RIGHT HALF
Mov C,A ;i «-.INTO C REG
POP PSW
CALL HEXLEFT ; AND THE LEFT HALF
RET i -« INTO A,
; * ¥ * * % FND OF XSUB.LIB
ENDM

FIGURE 14-1 (Continued)

command tail as it received them. XCMD is very useful for learning the exact details of
how the CCP sets up low storage before loading a command program—something every
systems programmer needs to know. Example 14-1 shows XCMD in operation.

StyLE oF EXxAMPLE PROGRAMS. XCMD is typical of the examples to follow. All of
them place variables and message constants between the PROLOG macro and the main
code, and put subroutines at the end. All will work under CP/NET; most should work
under MP/M but haven’t been tested under it. All were written to optimize clarity of
logic rather than speed or program size.

THE DISK DIRECTORY

The disk directory is the heart of CP/M’s file system. The directory is really a keyed
direct access file composed of extent records. There are endless ways in which these
records could be collated, listed, and reported on, if we could just get at them. In fact
there are service requests that allow us to read the directory easily—requests that are
supported under CP/M, MP/M, and CP/M-86.

Reviewing the Directory

DirREcTORY RECORDS. Let’s go over what we learned about directory operations in
prior chapters. Directory records are 32 bytes long. Each contains most of the data of an
FCB, notably a fileref, an extent number, a record count, and a data map.

FIGURE 14-2

The Disk Directory

DPSUBM MACRO
* * * % %]§-BIT REGISTER SUBROUTINES

i
i
H
.
H
.
i
D

O =+ =5 %s %s

H
D

PSLDHA

P$SRLD

P$SADAD

DP$ADAH

H
H
.
H
.
i
.
i
D

PSCPBH

*

SUBROUTINE TO LOAD DE FROM M[HL+A]
ALTERS ONLY DE, FLAGS.

EQU $
PUSH H
MOV
MVI
DAD
MOV
INX
MOV
FOP
RET

MAKE L6-BIT OFFSET

L}
r

o

ADD OFFSET TO BASE
PICK UP L.S. BYTE

1 GET M.S. BYTE

TomHOOm
= =

SUBROUTINE TO SHIFT-RIGHT-LOGICAL DE
ALTERS A,F (A = L.S. BYTE. Z,C FLAGS SET)

EQU $

ORA A ; CLEAR CARRY
MOV A,D ! RAR ! MOV D,A
MOV A,E | RAR ! MOV E,A

RET

SUBROUTINE TO ADD A TO DE
ALTERS A,F (A=M.S. BYTE, Z,C FLAGS SET)

EQU
ADD
MoV
MoV
ACI
MOV
RET

DoXmmn
=]

>

SUBROUTINE TO ADD A TO HL, AS ABOVE

EQU
ADD
MOV
MoV
ACI
MOV
RET

TorFrCCw
o

>

SUBROUTINE TO DO AN UNSIGNED COMPARISON
OF (B,C) :: (H,L). ALTERS A, LEAVES
FLAGS SET AS FOR THE COMPARE INSTRUCTION.

EQU $

MOV A,B ! CMP H

RNZ ; EXIT IF M.S. BYTES DIFFER
MOV A,C ! CMP L

RET ; B=H, EXIT WITH C:L FLAGS

* * END OF DPSUB.LIB
ENDM

DPSUB.LIB contains convenience routines for working with the 16-bit register pairs of the
8080. Use of the routines clarifies the logic of the example programs.

219

220

Services for System Programming

* % % x % XCMD -- EXAMINE THE COMMAND OPERANDS

e ma

MACLIB CPMEQU ; STANDARD NAMES

MACLIB PROG ; PROLOG, SERVICE MACROS
MACLIB HEXSUB ; HEX DISPLAY ROUTINES
MACLIE COSUB ;+ CONSOLE OUTPUT

.
’

PROLOG 20,XCMD

¥
FCBMSG DB “Default FCB --",CR,LF,CR,LF+B80H
TAILMSG DB CR,LF, "Command tail --“,CR,LF,CR,LF+80H
XCMD EQU s

LXI H,FCBMSG ; PRINT FCB HEADING

CALL COSTR

LXI H,CPMFCB

MVI B,l6 ; DUMP DEFAULT FCB

CALL HEXDUMP ; ..IN TWO LINES

CALL COCRLF
CALL HEXDUMP ! CALL COCRLF

LXI H,TAILMSG ; PRINT TAIL HEADING
CALL COSTR

LXI H,CPMBUFF

Mov AM GET LENGTH OF TAIL AND

ADI 00FH . .ROUND TO MULTIPLE OF

ANI OF0H 7 +.S5IXTEEN.

RZ ; (EXIT IF NO OPERANDS)
XCMD2 MoV C,A ; +«.SAVE LENGTH IN C

CALL HEXDUMP ; DUMP 16 BYTES OF TAIL

CALL COCRLF
MOV A,C ! SUB B ;COUNT 16 BYTES,
JNZ XCMD2 ;7 ..CONTINUE IF MORE
RET

COMMON SUBROUTINES

e e

HEXSUBM
COSUBM
END

FIGURE 14-3
The XCMD command displays the low-storage operands as the CCP leaves them. The
program allows checking out the way the CCP sets up operands.

Space ALrocaTion. File space is allocated in blocks. The size of an allocation block
is a vendor option that may be different on different disks. The data map in a directory
entry is a list of the allocation blocks controlled by that entry. The sum of the space
controlled by one entry is called a physical extent, or just an extent. A logical extent is
16K bytes of space. A physical extent is equal to one or more logical extents.

DirecTOorRY Use. A file that is larger than one physical extent has more than one
directory entry. Each entry for the file contains the same fileref but differs in its extent
number (and possibly in the S1 and S2 bytes, but that isn’t defined and might change
from one version of CP/M to another). We’ve said that the BDOS allocates directory
entries as they are needed. We didn’t say so, but you've probably guessed that the entries
for a file may appear in any sequence in the directory.

CONTENTS OF DIRECTORY ENTRIES

The directory occupies one or more allocation blocks. These are always the first
allocation blocks on the disk. Later we'll see how they are reserved. Each standard

—

Contents of Directory Entries

EXAMPLE 14-1
Running the XCMD program. 03h in the record count of the FCB is probably residual from
loading XCMD. Such unexpected effects can be discovered by simple display programs.

A>xcmd
Default FCB --

005C: 00 20 20 20 20 20 20 20 20 20 20 20 00 00 00 03 . oo
006C: 00 20 20 20 20 20 20 20 20 20 20 20 00 00 00 00

Command tail --
A>xcmd A:*.com this-is-too-long-to-be-a-fileref
Default FCB --

005C: 0L 3F 3F 3F 3F 3F 3F 3F 3F 43 4F 4D 00 00 00 03 «PPRI2222COMinn s
006C: 00 54 48 49 53 2D 49 53 2D 20 20 20 00 00 00 0O . THIS-15-

Command tail --

0080: 20 20 41 3A 2A 2E 43 4F 4D 20 54 48 49 53 2D 49) A:*_ COM THIS-I
0090: 53 2D 54 4F 4F 2D 4C 4F 4E 47 2D 54 4F 2D 42 45 5=TOO0-LONG-TO-BE
00A0: 2D 41 2D 46 49 4C 45 52 45 46 00 20 20 20 20 20 -A-FILEREF.

A>

(128-byte) record in the directory contains four 32-byte directory entries. Although they
are blocked in groups of four, each entry is independent of the others. Let’s look at the
data in a directory entry (Figure 14-4).

The User Code

INAcTIVE EnTRIES. The first byte of a directory entry, the one that corresponds to the
drivecode of an FCB, contains a user code, which is also an activity code. An inactive
directory entry contains ESh, which is usually the value to which a disk formatter
initializes every byte of every sector (but see the comments on disk formatting at the end
of the chapter).

ACTIVE ENTRIES. An active directory entry contains the user number, from 0 to 15
(00h to OFh). In prior versions of CP/M this value was always 00h. Version 2 (and
MP/M) added the concept of a user code and the activity byte was chosen to hold it.

Tue User Cobe N MP/M 2. In CP/M 2 and MP/M 1 the user code byte contains
either ESh or a number in the range of 0 to 15. Two new directory entry types have been
added in MP/M 2. Both are distinguished by values in their user code bytes. The
Directory Label entry is marked by a user code byte of 20h. An Extended FCB (XFCB)
is marked with 1xh, where x is a user code number.

The Attribute Bits

The fileref portion (the filename and filetype fields) of a directory entry is laid out just
like the same part of an FCB. This area is defined to hold ASCII characters. That means

221

222

Services for System Programming

00 01 08 09 0B 0C 0D 0E OF
| | ! Il | L L L L L
Activity Filename Filetype Extent S1 §2 Record
{user) count
code
10 IF

| 1 1 L 1 | | | | | | | L 1 1
~— Data map —

FIGURE 14-4
A map showing the layout of a directory entry. Compare it with the layout of an FCB (Figure
13-4).

that the most significant bits are unused. It’s no surprise that these bits have had
meanings assigned to them. When comparing the fileref of a directory entry to a
constant, or to another directory entry, you must be sure to mask off the most significant
bit of each byte.

ATTRIBUTE NoTATION. The CPM documentation refers to each of these bits by
naming its byte followed by a prime mark (apostrophe). The attribute bit in the first byte
of the filename is called f1' (f1 prime), the bit in the third filetype byte is t3" or (3 prime),
and so on.

THE READ-ONLY ATTRIBUTE. Bit 7 of the first filetype byte (11') represents the
read-only file attribute. When a file is made R/O with the STAT command, STAT sets
this bit to 1 in all extents of the file.

THE SysTEM ATTRIBUTE. Bit 7 of the second filetype byte (12') represents the System
(no directory display) attribute. When the STAT command gives a file the SYS attribute
it sets this bit to 1 in all extent entries for the file.

THE ARCHIVE ATTRIBUTE. Bit 7 of the third filetype byte (13") is used to signal a
change in a file. The BDOS sets t3' to 0 whenever it updates a directory entry, that is,
whenever the data map of an extent is altered. We’ll see later that a command program
can cause the bit to be set to 1. If that is done, and the bit is later found to be 0, then that
extent of the file must have been changed.

USING THE ARCHIVE ATTRIBUTE. Attribute t3' is intended for use by an archiving
program, that is, a backup program that backs up only files that have changed since the
last backup run. Such a backup scheme is much more economical than whole-disk
backup, as usually only a small number of files change over a backup period. An archive
program would have logic like this:

for each active directory entry do:
if not(t3') then do:
open this extent as an FCB;
copy this extent to backup;
record the extent in an archive catalog;
set t3' to 1 in the directory
end
end

Contents of Directory Entries

It would make use of the fact that any extent, not just the first one, can be opened with
service request 15. The other services needed are covered in this chapter. In MP/M 2 the
A option of PIP implements exactly this logic.

RESERVED ATTRIBUTE Bits. Bit 7 of each of the 4 right-hand filename bytes (f5'
through f8') has been reserved by Digital Research. We can assume that a use eventually
will be found for those bits.

FREE ATTRIBUTE Brts. In an act of unprecedented generosity Digital Research expli-
citly set aside bit 7 in each of the 4 left-hand filename bytes (f1’ through f4') for the use of
application programs. This creates a problem. There are only 4 bits and an endless
number of application programs. There is no central agency to record the use of the bits,
much less standardize it. Perhaps Digital Research will act in that capacity. If you are
writing a program for public distribution and want to use a file attribute bit, you might
contact Digital Research to see if anyone else has used your bit. No matter what anyone
does, these bits will either go unused or there will be incompatible uses.

SERVICE 30: SET ATTRIBUTE Bits. It is not necessary to have write access to the
directory in order to set the file attribute bits. Service 30 takes an FCB address as its
parameter, finds the matching directory entry, and copies the file attributes from the
FCB onto the directory entry. Service 30 changes all the attribute bits at once. If you
want to change only 1 bit while leaving all the others alone, the FCB should really be a
directory entry. Find the directory entry (see below), alter the bit of interest, and use the
directory entry as the FCB for service 30.

You can set or reset any of the 11 bits in this way, including the read-only attribute.
Considering that the read-only attribute is the only way to protect a file from destruction,
resetting that bit would be unfriendly, at the very least.

The Extent Number

Use oF THE EXTENT NUuMBER. The extent number of a directory entry links all the
entries for one file together. The first entry for the file is extent number zero, and the rest
have higher numbers. If the file is built sequentially, all extents through the last will exist
and all data maps save the last one will be full. If the file is built with direct writes, some
extent numbers may be absent. Extent entries don't necessarily appear in sequence in the
directory, although they will more often than not.

ExTeEnTs BEYOND THE 328D, CP/M supports files as large as 8 MB (32 MB in MP/M
2). If a directory entry controls the minimum amount of space, 16 KB, 512 entries are
needed to describe an 8 MB file. There is a conflict here, because the extent number byte
won’t hold that large a number. As we'll see later, the extent number byte is allowed to
have an ASCII question mark in it on certain service requests. Therefore it can’t be
allowed to have a normal extent number of 3Eh as that is a question mark. The largest
value allowed in the extent number byte has been set at 1Fh, allowing 32 distinct extent
numbers, from 00h to 1Fh. That was good enough in earlier versions of CP/M; 32
extents of 16 KB make a 512-KB file, the limit of a normal diskette.

223

224

Services for System Programming

ExTENT OVERFLOW. CP/M and MP/M now support large drives and files. How are the
additional extents recorded? The Digital Research documentation doesn’t say. We can
assume that the extent number is somehow split between the extent number byte and the
S1 or S2 byte, but we don’t know which of those bytes is used or how the split is
accomplished. Anything that is not documented can’t be relied on. What isn’t
documented may be changed in a later version, and so even if you find out how the larger
extent numbers are handled, you risk version dependency if you write code that relies on
1t.

The Record Count

Use oF THE Recorp Count. The record count byte is normally the sum of the
standard records controlled by the directory entry. It has two purposes. During sequen-
tial access the BDOS can compare the current record byte with the record count; when
they become equal it is time to open the next extent of the file. Second, the record count,
modulo by the number of records in a block, yields the number of records used in the last
block allocated.

Fies with HoLgs. The first use is undependable when the file has been created with
holes by direct access writes. Then the record count can be used to compute the number
of records in the last block allocated to the directory entry but may be higher than the
number of records owned by the entry.

The Data Map

Use oF THE DaTa Map. The data map is simply a list of allocation block numbers. A
value of zero indicates that no block has been allocated (there is a block numbered zero,
but it is always allocated to the directory, and thus zero can be used to mean that no block
exists), Normally the nonzero block numbers are filled in from the left of the map, and
the only zero values are at the right end. However, a file with direct access holes may
have block numbers of zero, representing unallocated space, at any point in the map.

Dara Mar FormaT. Some disks can hold more than 255 allocation blocks. In that
case a block number must be a 16-bit integer, and only eight of them can be recorded in
the data map. When the disk holds less than 256 allocation blocks, a block number will
fit in a byte. Then the data map can hold 16 block numbers. Later we’ll find out how to
tell which case holds for any particular disk.

THE SEARCH SERVICES

Two service requests give access to the directory entries in a way that is both device
independent and supported in CP/M, MP/M, and CP/M-86. These are requests 17 and
18, Search First and Search Next. Each requires the address of an FCB in the DE register
pair. Each returns a directory entry in the current record buffer.

The Search Services

Service 17: Search First

When your program requests service 17, the BDOS searches the directory for the first
entry that matches the fileref and extent number in your FCB. It places the matching
directory entry at one of four offsets in the current record buffer. Register A contains 0,
1, 2, or 3 to indicate the buffer offset. The offset is 32 times register A (add the register to
itself five times). The FCB used in the service is not changed.

Service 18: Search Next

Service 18 does exactly what service 17 does, except that the search for a directory entry
to match the FCB begins where the preceding search stopped. The next matching entry
will be returned. If either request fails to find a matching entry, it returns FFh in register
A to indicate failure.

Using the Search Requests

Burrer ConTENTS. The directory entry may appear in the buffer at an offset of 0, 32,
64, or 96 bytes. The reason for this is plain: the directory is written as 128-byte standard
records, each containing four directory entries, Under CP/M the BDOS moves the
record containing the matching entry into the buffer: the entry you want is at some offset
because it is one of the four entries in that record.

Burrer ConTENTS UNDER CP/NET. You should not assume that the BDOS always
moves a complete directory record into the buffer. Under CP/NET the data may have
come over the network from another machine. CP/NET, in order to minimize the amount
of data transferred, might send only the wanted entry, leaving the rest of the buffer
undefined. You can rely only on the exact letter of the specification: search promises to
return a single directory entry only.

SEARCH RESTRICTIONS. The BDOS remembers its position by noting its stopping
point in a variable within the BDOS. The same variable is used during an open or make
request, and possibly during other file operations. Therefore, you should not request any
other file services between one search and the next; the BDOS might lose its position. (It
is likely that some CP/M commands take advantage of this. It may be possible to open a
file under an ambiguous name, read it, then request a Search Next to find the next file to
read. This is not a documented feature of CP/M; like all such features you cannot rely on
it to be version or system independent.)

SEARCHING FOR UNIQUE FiLEREFS. The search requests may, of course, be used to
look for specific filerefs. For example, if you wanted to alter one attribute bit, you would
use a search request to find that file’s first directory entry. Alter the single attribute bit in
the entry and use the entry itself as the FCB given as input to service 30. That technique
preserves the settings of the other 10 attribute bits.

225

226

Services for System Programming

SEARCHING FOR AMBIGUOUS FILEREFs. The true usefulness of the search requests
comes from the fact that the fileref you pass may be ambiguous. The asterisk reference is
not allowed, but the fileref may contain any number of question marks. The first
directory entry that matches the fileref by the usual rules is returned by the search.

Tue HEXDIR ProGram. Figure 14-5 contains the source of a command called
HEXDIR. This program accepts an optional drivecode as its operand. It displays the first
directory entry of every file on the selected drive. The entries are sent to the console in
hexadecimal. The files displayed by HEXDIR are the same, and appear in the same
order, as the names displayed by the DIR command with the same operand. The only
exception is that HEXDIR will display names that have the SYS attribute and DIR will
not. Example 14-2 shows the output of HEXDIR.

SEARCHING FOR AMBIGUOUS EXTENTS, The search requests will accept a question
mark in the extent number position of the FCB. The HEXDIR program has a zero in the
extent number of its FCB. Accordingly, the search operations return only the entries that
have a zero in their extent number field. When the extent number is ambiguous, the
search functions return every directory entry of the files whose filerefs match the FCB. If
the fileref in the FCB is all question marks, every directory entry that is in use will be
returned.

Tue ACTDIR ProGram. The ACTDIR program tFigure 14-6) takes advantage of
extent ambiguity to display all active directory entries. It differs from HEXDIR only in
its heading message and the question mark in the extent number of the FCB. Run
ACTDIR against different disks with files of various sizes and note everything you can
about the way directory entries appear. If your system has a hard disk, build a file of 2 or
3 megabytes and display its directory entries. How is the extent number handled? Build a
file with direct access holes and look at its extents. Example 14-3 shows the output of
ACTDIR.

EXAMPLE 14-2
Running HEXDIR against a disk that held only a few files. The second entry is full; there
must be other extents for it. Note that allocation block numbers are two bytes each.

Arhexdir b:
Extent-zero directory entries, drive B

00 48 45 58 44 49 42 20 20 43 4F 4D 00 00 00 04 .HEXDIR COM....
02 00 00 00 00 00 00 QO QO 00 00 00 00 00 00 00 ..ccerennnnnnnns

00 50 52 49 4E 54 20 20 20 43 4F 4D 00 00 00 80 . PRINT COM. ...
03 00 04 00 05 00 06 00 07 00 08 00 09 00 OA 00 .sewessesnnnennns

00 48 45 58 44 49 52 20 20 41 53 4D 00 00 00 OD .HEXDIR ASM....
0cC 00 00 00 00 00 00 00 00 00 00 00 00 00 0D 0D ...veevccccennnns

—

The Search Services

* * * * + HEXDIR -- DISPLAY EXTENT-0 DIRECTORY ENTRIES

’
MACLIE CPMEQU ; STANDARD NAMES,
MACLIB PROG ; PROLOG, SERVICE MACROS
MACLIBE HEXSUB ; HEX DISPLAY ROUTINES
MACLIB COSUB ; CONSOLE OUTPUT ROUTINES
MACLIB DPSUB i L6-BIT ROUTINES
PROLOG 30,HEXDIR
¥
HEADING DB “Extent-zero directory entries, drive *
DRIVE DB 0,CR,LF,CR,LF+80H
THEFCB DB 0 i DRIVE ALREADY SELECTED
DB “272222727 ;7 FILENAME
DB “?77” ; FILETYPE
DB 0 ; EXTENT ZERO ENTRIES
DB 0,0,0 1 81, 52, RECORD COUNT
DwW 0.,0,0,0,0,0,0,0 : DATA MAP
DW 0,0 i CURRENT RECORD, DIRECT ADDR
HEXDIR EQU S
LDA CPMFCB ; SEE IF A DRIVECODE WAS GIVEN
DCR A ; CONVERT A=l INTO A=0
JP DIR2 ¢ (RESULT NOT FF -- CODE GIVEN)
SERVICE 25 : OMITTED, GET CURRENT DRIVE
DIR2 MOV E,A ;i SAVE DRIVE FOR SERVICE 14
ADI AT ; MAKE PRINTABLE,
STA DRIVE i +.PUT IN MESSAGE,
LXI H,HEADING
CALL COSTR ;i «.PRINT HEADING.
SERVICE 14 ; SELECT DRIVE (CODE IN REG E)
SERVICE 17,THEFCB ; GET FIRST ACTIVE ENTRY
’
DIRLOOP ORA A ; ANY ENTRIES LEFT?
RM ; (BACK TO CCP IF NOT)
CALL DIRDUMP ; YES, DUMP THIS ONE IN HEX
SERVICE 18,THEFCE
JMP DIRLOOP ; DO NEXT ENTRY, IF ANY
: DUMP THE DIRECTORY ENTRY WHOSE NUMBER IS IN A,
; FROM THE CURRENT RECORD IN THE BUFFER.
DIRDUMP LXI H,CPMBUFF
ADD A ; CONVERT 0,1,2,3 --> 0,32,64,96
ADD A ! ADD A
ADD A ! ADD A
CALL DP$ADAH ; ,.AND ADD TO BUFFER ADDRESS
MVI B,lé ; AMOUNT TO DUMP IN EACH LINE
CALL HEXLINE ! CALL COCRLF ;7 LST LINE
CALL HEXLINE ! CALL COCRLF + ZND LINE
CALL COCRLF ; BLANK LINE
RET
;7 COMMON SUBROUTINES
HEXSUBM
COSUBM
DPSUBM
END
FIGURE 14-5

HEXDIR displays the first directory entry for each file in the directory, including those that

have the SYS attribute.

227

228

Services for System Programming

* 4 % * ®* ACTDIR -- DISPLAY ALL ACTIVE DIRECTORY ENTRIES

MACLIB CPMEQU
MACLIB PROG
MACLIB HEXSUB
MACLIE COSUB
MACLIB DPSUB

STANDARD NAMES,

PROLOG, SERVICE MACROS
HEX DISPLAY ROUTINES
CONSOLE OUTPUT ROUTINES
16-BIT ROUTINES

H

PROLOG 30,ACTDIR

i
HEADING DB “Active directory entries, drive ~

DRIVE DB 0,CR,LF,CR,LF+B80H
THEFCB DB 0 ; DRIVE ALREADY SELECTED
DB “27272722727227 ; FILENAME
DB g r & 5 + FILETYPE
DB i ; *%* ALL EXTENT NUMBERS **
DB 0,0,0 ; §l, S2, RECORD COUNT
DW 0,0,0,0,0,0,0,0 ; DATA MAP
DW 0,0 ; CURRENT RECORD, DIRECT ADDR
L
ACTDIR EQU $
LDA CPMFCB ; SEE IF A DRIVECODE WAS GIVEN
DCR 7 O

FIGURE 14-6
ACTDIR shows all directory entries for all existing files. The remainder of the program is
identical to HEXDIR (Figure 14-5).

SEARCHING ALL EntriEs. Both HEXDIR and ACTDIR are limited to displaying -

active directory entries that were created under the current user code. When a question
mark is placed in the drivecode position of the FCB, the search operations return every
entry, whether active or not, under any user code. The only directory entries that are not
returned in this case are entries that have never been used.

EXAMPLE 14-3
Running ACTDIR against the disk of Example 14-2. The second extent of
PRINT.COM is revealed; it controls only 14 records (OEh in the record count) of one block.

Aractdir b:
Active directory entries, drive B

00 48 45 58 44 49 52 20 20 43 4F 4D 00 00 00 04 .HEXDIR COM....
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..vevvevnnnnnnns

00 50 52 49 4E 54 20 20 20 43 4F 4D 00 00 00 80 . PRINT COM....
03 00 04 00 05 00 06 00 07 00 08 00 09 00 0A 00 S T T

00 50 52 49 4E 54 20 20 20 43 4F 4D 0l 00 00 OE +PRINT COM.un
0B 00 00 00 00 00 00 OO0 00 0O 00 00 00 00 00 00 ..veieovoccnnnn-

00 48 45 58 44 49 52 20 20 41 53 4p 00 00 00 0D .HEXDIR ASM....
oc 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O GesmanEste T EnEs

A

Disk Space Management

Tue ALLDIR ProGrAM. Figure 14-7 shows the ALLDIR program. ALLDIR differs
from HEXDIR and ACTDIR only in its heading message and in the question mark in the
first byte of its FCB. When ALLDIR is run, it displays all directory entries except those
that have never been used (see the section on disk formatting for the meaning of “never
been used”). Usually some entries are inactive (have E5h in their first byte). The rest of
an inactive entry is unchanged from its last use. The fileref and data map will reflect the
state of that extent at the time the file was deleted. Example 14-4 shows the result of
running ALLDIR. Under MP/M 2 ALLDIR will display the Directory Label and any
XFCB entries that exist.

DISK SPACE MANAGEMENT

CP/M 2 can manage file space on almost any sort of disk from a single-density 5-inch
diskette to a multimegabyte hard disk. New disk models appear on the market almost
weekly. Each new model has its own set of dimensions, that is. its own number of heads
and tracks, range of sector sizes, and total capacity. The responsibility for managing
these device characteristics is placed on the BIOS. Only a few characteristics of a disk
are relevant to space management. The BDOS requires the BIOS to tell it the value of
these few parameters. Your programs can view the same parameters and so handle many
disk tasks while remaining as independent of hardware details as the BDOS is.

Fundamental Parameters

" CP/M asks the BIOS to tell it three fundamental things about any disk. The most
important parameter is the size of an allocation block. This parameter is chosen by the

X % & & &% ALLDIR -- DISPLAY ALL DIRECTORY ENTRIES

MACLIB CPMEQU ; STANDARD NAMES,

MACLIB PROG i PROLOG, SERVICE MACROS
MACLIB HEXSUE ; HEX DISPLAY ROUTINES
MACLIE COSUB ; CONSOLE OUTPUT ROUTINES
MACLIB DPSUB ;7 l6=BIT ROUTINES

PROLOG 30,ALLDIR

r
HEADING DB “All directory entries, drive *
DRIVE DB 0,CR,LF,CR,LF+80H
THEFCB DB o o ; ** ALL ** ENTRIES
DB TPRRRRIRR” FILENAME
DB ot FILETYPE
DB gt > ** ALL EXTENT NUMBERS #*

o we ms wr ome me

DB 0,0,0 Sl, 82, RECORD COUNT

Dw 0,0,0,0,0,0,0,0 ; DATA MAP

DW 0,0 CURRENT RECORD, DIRECT ADDR
ALLDIR EQU $

LDA CPMFCB ; SEE IF A DRIVECODE WAS GIVEN

DCR A

"IGURE 14-7
\LLDIR shows all directory entries, including those for erased files and those created under

other user codes. It does not show never-used entries. The program continues identically to
HEXDIR. 229

230

Services for System Programming

EXAMPLE 14-4
Running ALLDIR against the disk of Example 14-2. It reveals an erased file and one stored
under user code 2. Note that never used entries do not appear.

A»alldir b:
All directory entries, drive B

00 48 45 58 44 49 52 20 20 43 4F 4D 00 00 00 04 .HEXDIR COM....
02 00 00 00 00 00 00 OO0 OO0 OO 00 00 00 00 00 00 sasssesesanannns

00 50 52 49 4E 54 20 20 20 43 4F 4D 00 00 00 80 .PRINT COM. ..
03 00 04 00 05 00 06 00 07 00 08 00 09 00 OA 00 nersrsr R nneees

00 50 52 49 4E 54 20 20 20 43 4F 4D 0L 00 00 OE +PRINT COM, v
OB 00 0O 00 00 00 00 00 00 00 00 00 00 00 00 00 ..vvuwevecrnnnnns

00 48 45 58 44 49 52 20 20 41 53 4D 00 00 00 OD .HEXDIR ASM....
oc 00 00 00 00 0G 00 00 00 00 0O 00 00 00 00 0O P

B5 45 52 41 53 45 44 20 20 46 49 4C 00 00 0C 80 eERASED FIL....

Op 00 OE 00 OF 00 10 00 LL 00 12 00 L3 00 14 00 ..everennns seswa
E5 45 52 41 53 45 44 20 20 46 49 4C 01 00 00 80 eERASED FIL....
15 00 16 00 17 00 18 00 19 00 1A 00 LB 00 LC 00 & R e
E5 45 52 41 53 45 44 20 20 46 49 4C 02 00 00 7JE eERASED FIL....
D 00 LE 00 LF 00 20 00 21 00 22 00 23 00 24 00 o ELE 383
02 55 53 45 52 2D 32 20 20 46 49 4C 00 00 Q0 80 .USER-2 FIL...
25 00 26 00 27 00 28 00 29 00 2a 00 2B 00 2C 00 fei alade®ito,e
02 55 53 45 S2 2D 32 20 20 46 49 4C 01 00 00 OE +USER-2 FIL....
2n 00 00 00 00 00 00 00 00 OO OO 00 00 0O 00 00 ~ersrsesaaaanas .
A

author of the BIOS (usually the vendor of the disk system), and the choice has many
consequences. The BDOS must also know the capacity of the disk in allocation block
units and the number of standard 128-byte records that will fit on one track of the disk.
These three things are all that the BDOS needs to know in order to manage the disk.

ALLOCATION BLoCK Size. The allocation block size may take any of five values.
Those values are the integral powers of 2 from 2'° (i.e., 1024) to 2! (16,384). Note that
the size of an allocation block has nothing to do with the size of a disk sector. An
allocation block must contain an integral number of sectors; except for that stipulation it
is simply a quantity used by the BDOS for space allocation. The BIOS manages physical
sectors and is only indirectly concerned with allocation blocks.

Brock SizE AND SPACE EFFiciency. The allocation block size affects the file system
in several ways. The first effect is on the efficiency with which the disk space is used.
Since file space is allocated in whole blocks. the designer can expect that, on the
average, half of the last block in each file will be unused. The larger the block size, the
greater this unused space will be. The size of the disk must be considered, as well as the
number of files likely to be on it. The smaller the disk, and the greater the number) e
files, the smaller the block size ought to be.

Disk Space Management

BLoCK S1zE AND THE DATA MAP, CP/M knows the capacity of a disk only in terms of
how many allocation blocks it will hold (its size in terms of sectors and tracks is the
business of the BIOS). If the disk will hold fewer than 257 allocation blocks, then a block
number will fit in a single byte; the BDOS can record 16 block numbers in the data map
of each directory entry. If the disk holds more than 256 allocation blocks, then each
block number must be recorded as a 2-byte integer and the data map can hold only eight
numbers,

This is the second effect of the allocation block size: together with the disk capacity
it decides how many block numbers will fit in a data map. By making the block size large
enough that there are fewer than 256 blocks on the disk, the designer allows more blocks
to be named by each directory entry. This economizes on the number of entries needed
for large files, but it conflicts with the need for space efficiency.

BLOCK S1zE AND EXTENT S1zE. The block size and the disk capacity determine the
amount of space that can be described by one directory entry’s data map. That amount
will be either 8 or 16 times the size of a block. It will also be amultiple of 16,384, the size
of a logical extent. (There is one case that would violate this rule. If the block size were
1024 and there were more than 255 blocks, a directory entry could only describe 8K of
data. This case is not allowed; 1K blocks may only be used on disks that hold less than
256 KB of data.)

This is the third result of the choice of a block size. It determines the relation of a
physical extent (the space described by one directory entry) to a logical extent. The
larger a physical extent, the smaller the number of directory entries needed to describe a
large file. This affects the system's performance because it takes time to locate and open
a new extent record (a seek to the directory track is required). The larger a physical
extent, the less time it takes to process large files. This is especially important for direct
access processing. On the other hand, large extents require a large block size that results
in inefficient use of space.

BLOCK S1ZE AND DIRECTORY S1zE. The choice of allocation block size has one more
effect. The smaller the block size, the greater the number of directory entries it takes to
describe all the space on the disk. Designers must consider two extremes. At one
extreme they must imagine that a single file fills the disk. The absolute minimum number
of entries in the directory is the number of entries required to describe that file. If the
directory were smaller, it would never be possible to use the space on the disk. At the
other extreme, the disk might be filled with a large number of small files, each using only
one or two blocks of space but requiring its own directory entry to describe it.

In general the smaller the block size is, the larger the directory must be. As we’ll
see, there can’t be more than 16 allocation blocks devoted to the directory, so for large
disks the choice of block size is sometimes dictated by the need to have a directory of
reasonable size.

Brocks Per Disk. The BDOS expects the BIOS to tell it the total number of
allocation blocks that the disk will hold, This number is the capacity of the disk for space
allocation; when all of the blocks are in use, the disk is full.

231

232

Services for System Programming

RECORDS PER TRACK. The BDOS does not concern itself with the size of a disk sector;
that is purely the affair of the BIOS. However, the interface between BDOS and BIOS
(which we’ll examine in the next chapter) requires that the BDOS ask for disk operations
in terms of tracks and records, rather than in terms of records alone. The BDOS can
compute which standard record it wants to read or write. However, in order to know
which track that record is on, the BDOS has to know how many standard records there
are on one track. Then it can divide the record number by that amount and so learn what
track to ask for.

The Disk Parameter Block

The important disk parameters that control space management are passed from the BIOS
to the BDOS in a 15-byte structure called the Disk Parameter Block (DPB). Service
request 31 returns the address of the DPB for the disk that is currently selected. You can
make use of some of the fields in it. Figure 14-8 shows a map of the DPB; we’ll tour that
map in the following paragraphs. Table 14-1 shows all the possible combinations of
allocation block size and disk capacity, with the resulting DPB parameter values.

TreE XDPB ProGraM. The XDPB program in Figure 14-9 will display the DPB for
the default disk or (if a drivecode is given as its operand) for some other disk. Example
14-5 shows the result of running XDPB in a system that supported both single- and
double-density diskettes. Note that the most important parameter, the size of a block,
does not appear in the DPB. It affects all the other parameters and can be derived from
them.

SPT: STANDARD RECORDS PER TRACK. Your CP/M documentation refers to the first
field in the DPB by the name SPT, which stands for “sectors per track.” That name

TABLE 14-1
All possible combinations of allocation block size and disk size, and the effect of each

combination on the other disk parameters. The first row describes the only combination
allowed prior to CPM 2.0.

Block Block Block Blocks Blocks in Extent Logical Extent
Size Shift Mask per Disk Data Map Size Extents Mask

1024 03h 07h <256 16 16K 1 00h
>255 (not allowed)

2048 04h OFh <256 16 32K 2 01h

>255 8 16K 1 00h

4096 05h 1Fh <256 16 64K 4 03h

>255 8 32K 2 01h

8192 06h 3Fh <256 16 128K 8 07h

>255 8 64K 4 03h

16384 07h 7Fh <256 16 256K 16 OFh

>255 8 128K 8 07h

Disk Space Management

SPT: number of records/track

BSH: block shift factor

BLM: block mask

EXM: extent mask

DSM: drive capacity

DRM: directory size

ALQ ALl AL, ALL: initial allocation vector

CKS: check area size

OFF: count of reserved tracks

FIGURE 14-8
A map of the Disk Parameter Block (DPB), whose address is returned by service request 31.

reflects a confusion that runs through all the CP/M manuals. In CP/M 1.4, 128 bytes was
the only disk sector size supported by CP/M. People who worked with CP/M quite
reasonably thought “sector” when they meant “a unit of 128 bytes of data.” Unfortunate-
ly the habit has stuck even though a disk sector may now have any of a number of sizes,
with 128 bytes becoming less and less common.

The first DPB field contains the number of standard 1 28-byte records that will fit on
a track of the disk. A single-density soft-sectored diskette may have 128-byte sectors
(the second display in Example 14-5 describes such a disk), although that is not certain.
For all formats other than the “exchange format” this number will be some multiple of
the actual number of physical sectors on a track.

Note that this field of the DPB is a 16-bit integer. CP/M is prepared to handle disks
that hold more than 255 records per track. If the BDOS knows the number of the standard
record it wants, then it can compute what track it wants by dividing that record number
Yy DPB.SPT.

- BSH, BLM: THE BLOCK SHIFT AND BLOCK Mask. The BSH (Block Shift) byte of the
DPB contains the number of times that a record number should be shifted to the right to
obtain its allocation block number. The BLM (Block Mask) byte contains a mask, 233

Services for System Programming

% *# * % Y¥NPR -- DISPLAY THE DISK PARAMETER BLOCK

MACLIB CPMEQU ; STANDARD NAMES,
MACLIB PROG ; PROLOG, SERVICE MACROS
MACLIB HEXSUB ; HEX CONVERT & DISPLAY
MACLIB COSUB ; CONSOLE OQOUTPUT

PROLOG 30,DPB

DISPLAY EQU $; ENTIRE REPORT FORM

DB “Disk Parameter Block for drive
DRIVE DS 1 ! DB CR,LF
DE “SPT: °
SPT Ds 4 | DB ° records per track”,CR,LF
DB “BSH: *
BSH DS 2 ! DB recno >> BSH = block number”,CR,LF
DB “BLM: ~
BLM DS 2 ! DB ~ recno AND BLM = record in block”,CR,LF
DB “EXM: ~
EXM DS 2 ! DB logical extent versus physical”,CR,LF
DB “DSM:
DSM DS 4 ! DB “ highest block number (origin 0)”,CR,LF
DB “DRM: ~
DRM DS 4 ! DB “ highest directory number (origin 0)”,CR,LF
DB “ALV: ~
ALV DS 4 ! DB © bits reserving directory blocks”,CR,LF
DB “CKSs: ~
CKS DS 4 ! DB “ size of check vector in bytes”,CR,LF
DB “OFF: ~
OFF DS 4 ! DB * number of reserved tracks”,CR,LF+80H
r
DPB EQU $
LDA CEMFCE ; DRIVECODE GIVEN?
DCR A ; CONVERT A=0l INTO A=00
JP DPB2 ; (YES, ONE WAS GIVEN)
SERVICE 25 ; NO DRIVECODE, GET CURRENT DISK
DPE2 MOV E,A : SAVE FOR SELECT SERVICE
ADI ‘A’ 1+ MAKE DRIVECODE PRINTABLE,
STA DRIVE : ..PUT INTO DISPLAY
SERVICE 14 : ..AND SELECT IT
SERVICE 31 ; HL --> DPB FOR CURRENT DISK
PUSH H ; (SAVE IT FOR DUMP)
LXI D,SPT : DE --» FIELD IN DISPLAY,
CALL CVT2 : MAKE PRINTABLE, ADVANCE HL & DE
LXI D,BSH ! CALL CVTL
LXI D,BLM ! CALL CVTL
LXI D,EXM ! CALL CVTL
LXI D,D5M ! CALL CVT2
LXI D,DRM ! CALL CVT2
LXI D,ALV ! CALL CVTl ! CALL CVTL
LXI D,CKS ! CALL CVT2
LXI D,OFF ! CALL CVT2
LXI H,DISPLAY
CALL COSTR ; PRINT THE WHOLE THING
POP H : THEN DUMP IT ALL IN HEX
MVI B, 15

CALL HEXDUMP ! CALL COCRLF
RET

FIGURE 14-9
XDPB displays the Disk Parameter Block, the structure from which the BDOS gets all it

information about a disk.

RETURN TO CCP

234

Disk Space Management

éVT? EQU $ i DISPFLAY l6-BIT INTEGER
i (B0OBO FORM -- FIRST BYTE IS THE LEAST-SIGNIFICANT)

o PUSH H ;i SAVE -->L.S. BYTE

INX H ; HL =-=>M.S5, BYTE
CALL CVTL i -.CONVERT, STORE THAT
XTHL i SAVE HL, HL -->L.S5.B.
CALL CVTL i «.CONVERT, STORE THAT
POP H i HL=-=>NEXT DATA
RET

CVTl EQU $ i DISPLAY BYTE AT HL++
MOV A,M ; GET BYTE,
INX H i ««ADVANCE HL

CVTLA CALL HEXBYTE ; A,C = ASCII DISPLAY
STAX D i PUT LEFT IN DISPLAY
INX D
MOV A,C ; PUT RIGHT IN DISPLAY
STAX D
INX D
RET

* % % % % COMMON SUBROUTINES

- me me

HEXSUBM
COSUBM
END

FIGURE 14-9 (Continued)

which, if ANDed with a record number, will produce the relative number of the record
within its allocation block.

The size of an allocation block can be determined from BSH. Initialize a register
pair to the value 128. Then double the register contents (either with a left shift or with an
add) BSH times.

EXM: Tue Extent Mask. The EXM (Extent Mask) field of the DPB gives the
relationship between a physical extent and a logical extent. A logical extent number
results from dividing a record number by 128. The corresponding physical extent
number can be computed from the logical extent number using EXM. However, the
physical extent number can also be computed directly from the record number and BSH
(shift the record number right BSH times to yield a relative block position, and divide the
result by 8 or 16 depending on the number of blocks in a data map). It is not clear what
role EXM plays in the BDOS’s calculations.

DSM: HiGHEST BLOCK NUMBER. The DSM (Disk Space Maximum) field of the DPB
gives the highest valid allocation block number for the disk. Allocation blocks are
numbered from zero, so DSM is one less than the number of blocks on the disk. If the
most significant (right-most, as the 8080 stores it) byte of DSM is zero, then there are 16
block numbers in a data map. If it is not zero, then a data map must contain eight numbers
of 2 bytes each.
The capacity of the disk in kilobyte units can be computed from DSM and BSH.
Initialize a register pair with DSM+ 1. Double that value BSH-3 times. Double the value
= BSH times to find the disk capacity in records. Note that the disk capacity in bytes
(DSM+1 doubled BSH+7 times) is likely to overflow a 16-bit register. 235

236

Services for System Programming

EXAMPLE 14-5

The output of XDPB, as run against double-density and single-density diskettes. The DPB
provides the STAT command with most of the information it displays in the disk status
report.

A>dpb

Disk Parameter Block for drive A

SPT: 0040 records per track

BSH: 04 recno >> BSH = block number

BLM: OF recno AND BLM = record in block
EXM: 00 logical extent versus physical

DSM: 0L2B highest block number (origin 0)
DRM: 007F highest directory number (origin 0)
ALV: C000 bits reserving directory blocks
CKS: 0020 size of check wector in bytes

OFF: 0002 number of reserved tracks

F777: 40 00 04 OF 00 2B 0L 7F 00 CO 00 20 00 02 00 BoaeeteuB,

A>dpb b:

Disk Parameter Block for drive B

SPT: 00lA records per track

BSH: 03 recno »> BSH = block number

BLM: 07 recno AND BLM = record in block
EXM: 00 logical extent versus physical

DSM: 00F2 highest block number (origin 0)
DRM: 003F highest directory number (origin 0)
ALV: CO00 bits reserving directory blocks
CKS: 0010 size of check vector in bytes

OFF: 0002 number of reserved tracks

F7lD: 1A 00 03 07 00 F2 00 3F 00 CO 00 10 00 02 00 r.?.@.....

—

DRM: Size oF DIRecTOrY. The DRM (Directory Maximum) field of the DPB gives —

the highest numbered entry in the disk directory. The entries are numbered from zero, so
there are DRM+ 1 entries in the directory. Note that DRM is a 2-byte field; CP/M is
prepared to handle directories with more than 256 entries.

Recall that directory entries are stored four per standard record. Therefore,
DRM + 1 will be a multiple of four and DRM+1 shifted right twice will yield the number
of standard records in the directory.

ALV: ALLOCATION VECTOR. The BDOS keeps an allocation vector for each active
disk. This is a string of DSM+ 1 bits, one bit per allocation block, in which a 1-bit means
that the related block is in use. The two ALV bytes of the DPB are the initial value for this
allocation vector. They become the leading bytes of the full vector. Some number of
leading bits in the ALV bytes are set to 1 so as permanently to reserve that many
allocation blocks to contain the directory.

CKS: DIReCTORY CHECK S1zE. When the BDOS selects a drive it can check to see if
the disk on that drive has been changed since the last warm start. If the volume has been
changed, the drive is made read only.

The CKS (Check Size) field of the DPB determines if this will or will not be done. If
it is zero, then no check will be made. This is usually the case only for drives whose disks
cannot be removed. If CKS is not zero, checking will be done. In that case CKS is
usually given the value (DRM+1)/4, the number of standard records in the directory.
CKS might be smaller than (DRM+ 1)/4, but then not all entries would be checked; there
would be a small possibility that a disk change could go undetected.

Disk Space Management

In MP/M 2 the most significant bit of CKS is used as a flag. If that bit is 1, the drive
described by this DPB has fixed disks. If the bit is 0, the disk can be removed from the
drive.

OFF: Track OFFsET. Most disks have reserved tracks. Diskettes have two or three
tracks reserved for the image of the Monitor that is loaded on a warm or cold start. The
OFF field of the DPB tells how many tracks are reserved on this particular disk. The
BDOS will add this value to the track number it computes using the record number and
the SPT field, before requesting that the BIOS seek to that track. Since the first blocks on
the disk are reserved to the directory, and since disk tracks are numbered from zero, the
value in OFF is also the number of the track that contains the directory.

LARGE OFFseT VaLues. The OFF field is 2 bytes long. CP/M is prepared to handle
disks that have more than 255 reserved tracks. This might seem peculiar. Why should so
many tracks be reserved? The answer is that the OFF value can be used to partition a
large disk into several smaller logical drives. Imagine a large disk with 512 tracks. It
could be presented to the BDOS as four separate disks, each with its own DPB. The
capacity values of the drives might be equal, each reflecting the capacity of 128 tracks of
the disk. The offset value of the first would be zero, of the second 128, of the third 256,
and of the fourth 384. As far as the BDOS would be able to tell four different drives
would exist. The BIOS would know that there was only one.

A Hypothetical Disk

PARAMETERS OF THEDISK. Pretend we’re designers, preparing to interface a new disk
to CP/M. The disk is a hard disk with four recording surfaces under four read-write heads
and 128 tracks per surface. CP/M and MP/M don’t have the concept of multiple
read-write heads, so we will simply treat it as a 512-track disk; in our BIOS we will
translate BDOS track requests into cylinder and head requests.

Each track of the disk holds 32 sectors of 512 bytes, for a total of 16,384 bytes per
track. The total capacity of the disk is 8 MB and we’ll present it to CP/M as a single
logical drive. But what disk parameters shall we use? Let's get out our pocket calculators
and try some numbers.

FINDING THE BLOCK S1zE. An allocation block size of 1024 is clearly out of the
question. It yields 8192 blocks in total; block numbers would be 2 bytes, and a physical
extent would be less than a logical extent. That isn’t allowed.

Try again with a block size of 2048. There are then 4096 blocks: each directory
entry can control 16K. If a single file filled the disk, it would occupy (8 MB divided by
16 KB) 512 extent entries. That is the minimum size of the directory, which requires 128
records or 8 blocks to hold it. The ALV bytes would be FFOOh (refer to Table 14-1 for
the other DPB values).

ExTrREMES OF THE DIRECTORY. However, there is another extreme to consider. The
disk might be filled with 4096 one-block files. It would require 4096 entries, or 1024
directory records, or 64 blocks, to hold such a directory. Nobody would have so many

237

238

Services for System Programming

little files, but this design is short on directory entries. Suppose there were 256 two-block
files on the disk. Each uses up a directory entry. There would be 3584 unused blocks left,
and only 256 directory entries left to describe them. It would take 448 directory entries to
describe that space, so we clearly risk running out of directory entries before we run out
of allocation blocks.

A Barancep DesiGN. Try once more with a block size of 4096. Then the disk
accomodates 2048 blocks in total. The eight entries in a data map will describe 32 KB. If
the disk is completely filled with a single file, that file will be described in 256 directory
entries. Let’s allow 512 directory entries instead. Now if there are 256 two-block files
(or even 256 one-block files), enough entries remain to describe all the remaining space.
The directory will fit in four blocks (ALV is FOOOh).

This last design seems the best. Each file will contain half a block, or 2048 bytes, of
wasted space, but that can’t be avoided. If there are 512 files, there’ll be 1 MB of wasted
space. That is only 12 percent of the total; the actual amount of wasted space will
probably never ‘approach that.

Tue REcorp Count ProBLEM. When, as in this example, the physical extent
exceeds 16 KB, a directory entry will control 256 or more records. How can these large
numbers be counted in the single FCB byte used for a record count? The documentation
doesn’t say. It seems likely that the byte contains, not the number of records in the whole
extent, but the number of records in the last logical extent used within it. The record
count would be the actual count modulo 128, or would be set to 128 to indicate that the
last logical extent was full. This might explain the BDOS’s need for the EXM field,
which is redundant otherwise.

Activating a Drive

The first time a drive is used following a warm or cold start the BDOS must perform two
chores. The CP/M documentation refers to these as “logging in” the drive. The two
chores are to build the allocation vector for the disk, and to build its directory check
vector. These vectors are built in space provided by the BIOS.

THE ALLOCATION VECTOR. The allocation vector is a bit map, an array of bits each of
which corresponds to one allocation block. Therefore, the size of the allocation vector is
DSM bits (rounded up to a byte). The BIOS is required to contain space for an allocation
vector for each drive that it supports. As we’ll see, the address of this area is returned
during a BIOS call.

When a disk is activated, its allocation vector is initialized to all 0-bits. Then the
ALV bytes from the DPB are installed in the first bytes of the vector. That ensures that the
blocks used for the directory are reserved. Finally, the BDOS reads all the directory
records. Each time it finds an active directory entry it reads the data map in that entry.
For each nonzero block number in the data map it sets the corresponding bit of the
allocation vector to 1.

Disk Space Management

Tue XALV ProGrAM. Service request 27 returns the address of the allocation vector
for the disk that is currently selected. The XALV program in Figure 14-10 will display
the allocation vector of the default disk or (if a drivecode is its operand) another disk. The
vector is displayed as a list of 1’s and 0’s, 64 per line. Run XALV, then erase a file and
run it again. Copy a large file with PIP and run XALV once more. Example 14-6 shows
what XALV’s output looks like.

Tue Directory CHECK VECTOR. The BIOS is required to provide space for a
directory check vector for each drive it supports. That vector is an array of bytes, 1 byte
for each standard record in the directory, or (DRM+ 1)/4 bytes.

The BDOS builds the check vector while it builds the allocation vector. It forms a
1-byte hash code for each standard record in the directory and places that hash code in the
check vector. Thereafter every time it scans the directory for some extent record it again
forms a hash code as it reads each record. If a hash code fails to match the one formed
when the disk was activated, the BDOS assumes that the disk volume has been changed.
It marks the drive read-only. Each time a directory entry is updated because of a file
access its standard record’s hash code must be updated as well.

Space Allocation

ALLOCATING A BLock. Once you understand the space management parameters, you
can probably work out the logic of space allocation for yourself. When the BDOS needs
to give a new allocation block to a file, it scans that drive’s allocation map from left to
right. The first 0-bit found corresponds to the first free allocation block. That bit’s (and
block’s) number is placed in the FCB for the file.

ALLOCATING AN EXTENT ENTRY. When the BDOS needs a new extent record, it reads
the directory and scans for the first inactive entry (the first with E5h in the user code
byte). That is the entry that it initializes with the current user number, the fileref from the
FCB, an extent number one greater than that in the FCB, and a data map of zeros.

ORDER OF ALLOCATION. Both of these allocation schemes use (or reuse) the lowest
numbered space first. This tends to keep active directory entries compressed to the front

EXAMPLE 14-6

The output of XALV, run against a double-density diskette. The pattern shows CP/M’s
preference for allocation on the outermost tracks. Patches of 000 in the first rows show
erased files,

A>xalv
Allocation vector of disk A

111111110000 L 0 0 R LR 000 Q) 0) 0 0 0 a0t e tnelItatonity
LLL1LLLA N 1 L Ll 0 L L0101 010101)01011000L10L000000000000111
LLLLLLLALL111L10000000L0001011101111111100000000000000000000L1111
1111111111110000000000000L1E1111111000000000000000000000000000000
00

A>

239

* % % * * ¥ALY -- EXAMINE THE ALLOCATION VECTOR

MACLIB CPMEQU ; STANDARD NAMES
MACLIB PROG : PROLOG, SERVICE MACROS
MACLIB DPSUB : 16=BIT ROUTINES
MACLIB COSUB ; CONSOLE OQUTPUT
L

PROLOG 30,XALV

DPBSDSM EQU 5 ; OFFSET TO “DSM” IN D.P.B.
HEADING DB “Allocation vector of disk ~
DRIVE DB 0,CR,LF,CR,LF+80H
XALV EQU B
LDA CPMFCB ; DRIVECODE GIVEN?
DCR A : FCB FORM TO SERVICE 14 FORM
Jp XAL2 ; (DRIVECODE SPECIFIED)
SERVICE 25 ; OMITTED, GET CURRENT DRIVE
XAL2 MOV E,A ; SAVE FOR SERVICE 14
ADI ‘A ; MAKE PRINTABLE,
STA DRIVE ; ..PUT DRIVE IN HEADING,
LXT H,HEADING
CALL COSTR : ..AND PRINT IT.
SERVICE 14 : SELECT WANTED DRIVE
SERVICE 31 ; HL --> DISK PARAMETERS
MVI A,DPBSDSM ; OFFSET TO DPBE.DSM
CALL DPSLDHA ; LOAD THAT TO DE
MVI A, 7 : ROUND DSM UP TO
CALL DPSADAD ; ..A MULTIPLE OF 8
MVI B,3 : ..THEN DIVIDE IT BY 8
XALSR CALL DPSSRLD ; ..BY SHIFTING DE RIGHT
DCR B ! JNZ XALSR
: DE = NUMBER OF BYTES IN THE ALLOCATION VECTOR
SERVICE 27 ; HL --> ALLOCATION VECTOR
MVI 8,8 : B = BYTES PER LINE

iALOOP CALL XALBYTE DISPLAY 8 BITS,

DCX D 7 ..COUNT IT,
MOV A,E ! ORA D ; ..CHECK FOR ZERO,
RZ ; ..BACK TO CCP IF THAT’S IT
DCR B ; SEE IF THAT WAS 64 BITS
JNZ XALOOP ; (CONTINUE IF NOT)
CALL COCRLF ; NEW LINE AFTER 64 BITS
MVI E,8
JMP XALOOP ; CONTINUE
: SUBROUTINE TO PRINT THE 8 BITS OF THE BYTE AT [HL]
; INCREMENTS HL TO NEXT BYTE, ALTERS AF.
XALBYTE PUSH B ; SAVE A WORK REG
MVI c,8 ; C HAS THE LOOP COUNT,
MOV B,M ; ..B THE BYTE ITSELF.
INX H ; INCREMENT DATA POINTER
¥
XBL MoV A,B ; CURRENT BIT TO CARRY AND
RAL ! MOV B,A
MVI A,’0”7 ; ..PRINT A ZERO OR
ACI 00 ; ..A ONE, DEPENDING ON CARRY
CALL cout
DCR C ! JNZ XBl
’
POP B
RET

COMMON SUBROUTINES

DPSUBM
COSUBM
END

FIGURE 14-10
XALV displays the allocation vector for a disk. Each bit stands for an allocation block; 1
240 means the block is in use.

Disk Formatting and the Directory

of the directory, and files compacted toward the outer edge of the disk. It means that the
track of a diskette that receives the most wear is the track that carries the directory,
followed by the rest of the tracks in ascending numerical order. In normal use an
unreadable disk sector on one of the innermost tracks may go undetected for weeks,
whereas a bad sector on an outer track will be discovered very quickly.

DISK FORMATTING AND THE DIRECTORY
The Directory High-Water Mark

The logic of the BDOS's directory scan depends on finding E5h in the first byte of an
inactive entry. Some simple tests with a newly formatted diskette and a stopwatch
revealed that the dependency goes even deeper. The time it takes the BDOS to logina
disk does not vary with the number of active files on a disk. It varies with the maximum
number of directory entries that have ever been used, whether or not those entries are
presently active.

The CP/M documentation asserts that a program like ALLDIR will see every
directory entry. If the documentation were correct, ALLDIR would always display the
number of entries given by the DRM field of the Disk Parameter Block. In fact, it does
not. ALLDIR will display every directory entry that has ever been used. but it will not
display a directory entry that has never been used.

Both these facts imply that the BDOS has some way of detecting the high-water
mark of its use of the directory. Presumably it stops reading the directory at the
high-water mark. There can’t be an active entry past the high-water mark because the
BDOS always allocates the earliest unused entry.

But what is the high-water mark? E5h in the first byte signals an inactive entry. The
documentation doesn’t say, but we can hypothesize that E5h in the second byte signals
an entry that has never been used. This is reasonable, because filenames are (supposed-
ly) always uppercase. A second byte of E5h could only result from a filename beginning
with “e,” with its f1” attribute bit set.

The Reason for E5h

Why does CP/M have this reliance on the byte value E5h? That is the sector formatti ng
character specified by the IBM standard for single-density diskettes, CP/M was original-
ly designed to support single-density, “IBM-compatible” diskette drives. A freshly
formatted single-density diskette will contain E5h in every byte of every sector, and
especially in the directory sectors. Since E5h signals an inactive entry, an initialized
diskette automatically has an empty directory. If E5h indeed signals the high-water
mark, then an initialized diskette has its high-water mark set automatically as well.

The Fill-Character Dilemma

E5h is not a universal constant, nor was its choice as the format fill character arbitrary.
The format fill character is chosen to have a bit pattern that optimizes the action of the

241

242

Services for System Programming

drive electronics. Not surprisingly the fill character specified by IBM for its double-
density drives is different: 4Eh. The fill character reccommended for a hard disk will be
different still. A disk formatter that fills double-density sectors with E5h is not “IBM
compatible.” On the other hand, a CP/M disk formatter that fills sectors with 4Eh is
asking for trouble. The BDOS will think that the directory of such a diskette is full!

That can be circumvented by requiring the user to issue ERA *.* after formatting a
diskette. That will put E5h in all the user code bytes, making all entries appear inactive.
It probably won’t, however, reset the high-water mark by writing E5h in every second
byte. On such a diskette ALLDIR ought to display every directory entry, and log-in time
should not vary with directory use.

Most disk vendors bow to necessity and use the ES5 fill character for all disk formats,
accepting a slight loss of disk reliability in return for CP/M compatibility. A few
formatters attempt to compromise by writing E5 in every 32nd byte and the optimum fill
character elsewhere, in effect doing ERA *.* for the user.

Chapter 15

The BIOS and

System Generation

THE BIOS
The BIOS Interface—CP/M and MP/M
The BIOS Interface—CP/M-86

THE BIOS START FUNCTIONS
The Cold Start Entry
The Warm Start Entry
The CCP’s Autocommand Entry

THE BIOS DISK FUNCTIONS
Disk Selection
Track Addressing
Record Addressing
Reading and Writing

THE BIOS SERIAL I/O FUNCTIONS
Functions for Logical Devices
BIOS Support of the Physical Devices

CUSTOMIZING THE BIOS
Changing the Storage Size
Changing the Disk Functions
Changing the Serial I/0 Functions
Testing BIOS Changes

SYSTEM GENERATION
The Bootstrap Tracks
The MOVCPM File
The MOVCPM Command

244
244
244

246
246
247
248

248
248
249
250
252

258
258
260

261
261
263
264
265

265
266
267
268

243

244

Saving the Relocated CCP and BDOS 269
Adding the BIOS 269
The SYSGEN Command 271

This chapter covers the BIOS, the part of the Monitor that is supplied by the vendor to
handle the I/0O devices. We'll examine its functions and how they are called. Then we’ll
go over the procedure for modifying the BIOS, linking it to the BDOS, and putting the
updated Monitor on the bootstrap tracks of a diskette. The presentation assumes that
you've had considerable experience with both assembly language and CP/M.

THE BIOS

The BIOS contains all the device-dependent code in the Monitor. Its interface to the
BDOS is the same for CP/M and MP/M. That interface may be used by ordinary
commands, although there is rarely any need to do so.

The BIOS must be customized to the hardware of a particular system. The bulk of
the code in it is concerned with handling the disks, and is usually provided by the vendor
of the disk system. The rest of the BIOS, usually less than a fifth of it, operates the serial
I/O devices. This part too may have been provided by the party who sold the system, or
the job of tailoring the serial I/O code may have been left up to you. It is this part of the
BIOS that most often needs changing because serial devices are often added or replaced.

The BIOS Interface—CP/M and MP/M

In CP/M and MP/M the BIOS resides just above the BDOS, in the highest addresses of
working storage. The first dozen instructions in the BIOS constitute a jump table, alistof
jump instructions each of which leads to a service routine that provides a single function.
We'll call this list of jump instructions the entry table. Table 15-1 lists all the entries.

The address at location O0h in storage is a jump to the second jump of the entry
table, an entry that produces the service of a warm start of CP/M. The firstentry, the cold
start service, is only needed during a cold start. The other entries are divided between
disk services and serial I/0 services. Of the latter all except the List Status function are
available as BDOS services.

Tue BIOSCALL LiBrary. Figure 15-1 shows the contents of a macro library,
BIOSCALL.LIB. This library contains equate statements to define the entry table and a
subroutine named BIOS that calls the BIOS service indexed by register A. We’ll use this
library in the examples that follow.

The BIOS Interface—CP/M-86

CP/M-86 provides an interface to the BIOS by way of a BDOS service request. A
program under CP/M-86 requests a BIOS function by requesting BDOS service 50.

The BIOS

Consult the Reference section of this book for the parameters to be passed with service
50. In essence, the program supplies the offset into the BIOS entry table and the contents
of the BIOS argument registers. Although the calling sequence is different, the BIOS
functions of CP/M-86 are the same as those of CP/M.

TABLE 15-1

The functions of the BIOS, with their offsets in the BIOS entry table. The entry table is found
from the address in low storage at 0001h. The disk functions cannot be called from a
command program under MP/M 2.

Name of Entry Table
Function index, offset Purpose
Start Functions

BOOT -1, -03h Finish initializing the system after the bootstrap
load has been completed.

WBOOT 0, 00h Refresh the CCP and BDOS images at the end of
a command; refresh low-storage jumps.

Disk Functions

SELDSK 8, 18h Select the disk to which following disk functions
refer.

SETTRK 0, 1Bh Select the track for further operations.

SETSEC 10, 1Eh Select the standard record (not sector) of the
current track for the next operation.

SECTRAN 15, 2Dh Translate a record position number according to
the skew algorithm in effect for the disk.

SETDMA 11, 21h Establish the address of the record buffer for the
next operation.

READ 12, 24h Read the currently selected record into the cur-
rent buffer.

WRITE 13, 27h Write the data from the current buffer into the
selected record.

HOME 7 15h Equivalent to a call to SETTRK with an argu-
ment of zero.

Serial 10 Functions

CONIN 2, 06h Get the next byte from the logical console.

CONOUT 3, 0Sh Write a byte to the logical console.

CONST 1, 03h Return a signal that there is or is not an input byte
ready at the logical console.

LIST 4, OCh Write a byte to the logical printer.

LISTST 14, 2Ah Return a signal that the logical printer is or is not
ready to accept another byte.

READER 6, 12h Get the next byte from the logical reader.

PUNCH 5, OFh Write a byte to the logical punch.

245

246

The BIOS and System Generation

; * % * % BIOSCALL.LIB: CODE FOR CALLING BIOS ENTRIES

'

B$WBOOT EQU 0*3

BSCONST EQU 1*3

BSCONIN EQU 2*3

BSCONOUT EQU 3*3

BSLIST EQU 4*3

BSPUNCH EQU 5*3

BSREADER EQU 6*3

BSHOME EQU 7*3

BSSELDSK EQU 8*3

BSSETTRK EQU 9%*3

B$SETSEC EQU 10*3
B$SETDMA EQU L1*3
BS$SREAD EQU 12%*3
BSWRITE EQU 13%3
BSLISTST EQU 14%3
BSSECTRAN EQU L5%3

P

WARM START

CONSOLE STATUS
CONSOLE INPUT
CONSOLE OUTPUT
LIST OUTPUT

PUNCH OUTPUT
READER INPUT

SEEK TO TRACK 00
SELECT DRIVE
SELECT TRACK
SELECT RECORD

SET BUFFER ADDRESS
READ ONME RECORD
WRITE ONE RECORD
LIST DEVICE STATUS
SKEW TRANSLATION

SUBROUTINE TO CALL BIOS AT THE ENTRY TABLE
VECTOR WHOSE OFFSET IS IN THE A-REGISTER.
ALTERS A&F, AND HL. PRESERVES BC, DE

*% NOTE: ASSUMES BIOS IS ON PAGE BOUNDARY **

BIOSM MACRO

BIOS EQU $
PUSH B ! PUSH D
LHLD BOOT+1 ; HL=->WBOOT ENTRY
ADD L : ADD A TO MAKE ADDRESS
MOV L,A : HL-->DESIRED BIOS ENTRY
PUSH H : SAVE THAT, GET
LXI H,BIOSRET ;..RETURN ADDRESS
XTHL ; STACK RETURN ADDR,
PCHL ; ..G0 TO BIOS, WHICH
BIOSRET EQU] + RETURNS HERE.
POP D ! POFP B
RET
ENDM

; * * % % * END OF BIOSCALL.LIB

FIGURE 15-1
BIOSCALL.LIB demonstrates the code needed to call on BIOS functions. Calling the BIOS is
rarely necessary.

THE BIOS START FUNCTIONS

The BIOS functions fall into three groups: start functions, disk functions, and serial I/'O
functions. In this section we'll examine the start functions, that is, the work the BIOS
does during a cold or warm start.

The Cold Start Entry

The first entry to the BIOS is intended for the use of the bootstrap load program; it
initializes the system immediately after the Monitor has been loaded by a bootstrap
loader.

BootsTrRAP LOoAD. In most systems a hardware reset causes a bootstrap load opera-
tion. In almost all systems reset enables a segment of read-only storage that contains a
bootstrap load program. That program may load the entire image of the Monitor from the

The BIOS Start Functions

reserved tracks of the disk in the A-drive. Or it may only load a one- or two-sector loader
from the first track, which in turn loads the rest of the Monitor.

Once the complete Monitor image—CCP, BDOS, and BIOS—has been read into
high storage, the bootstrap program transfers control to the Monitor by jumping to the
first vector of the entry table.

InrTiaL1zing THE HARDWARE. When control arrives at the cold start routine of the
BIOS, the entire Monitor has just been loaded. The BIOS code may assume that the cold
start was initiated by a hardware reset, and that therefore all the serial devices in the
system have been reset. One of the purposes of the cold start entry is to initialize these
devices. It may have to set the transmission speed of serial device ports, or initialize the
buffer of a memory-mapped terminal. If there are interrupt-driven /O devices, the cold
start code should initialize the devices, set up the interrupt vectors, and enable the CPU
for interrupts. The cold start code is responsible for typing a log-on message at the
terminal ,

INITIALIZING Low STORAGE. The cold start code initializes two low-storage locations
that are not changed by warm start. It sets the current disk number to 00h, indicating
drive A: and user code zero. It sets the initial value of the IOBYTE, which represents the
state of the I/O device assignments. As delivered, most BIOSs initialize the IOBYTE to
00h, which assigns all four logical devices to TTY:. This is not the best setting; new
users find it a barrier to understanding the use of STAT for device assignments. A better
setting is 81h, which assigns CON: to CRT: and LST: to LPT:.

After initializing devices and the IOBYTE, the cold start code joins the logic of the
warm start entry to initialize the jump addresses in low storage and transfer control to the
CCP.

Location oF THE CoLb StarT Cobe. Once the cold start is over (that is, once the
BIOS is initialized and has entered the CCP), the cold start code is never used again.
Because of this single use, some designers place the code in what is, the rest of the time,
a BIOS disk buffer. That saves a few bytes of space (the BIOS is always short of space).
No command program should ever call the cold start entry; it may end up “executing” a
directory entry.

The Warm Start Entry

The second entry table vector leads to the warm start routine. This routine is called at the
end of most commands. Its purpose is to refresh the BDOS, CCP, and low storage after a
program has, at least possibly, overwritten them. The BIOS itself is only refreshed by a
cold start, so if a command overwrites the BIOS then nothing, including warm start, will
work until a reset is done.

Warm START FUNCTIONS. The first job of warm start is to reload the image of the CCP
and the BDOS (but not the BIOS) from the reserved tracks of the disk in the A-drive. To
do so it no doubt will use several of the BIOS disk functions as subroutines.

247

248

The BIOS and System Generation

After loading the CCP and BDOS the warm start code will usually refresh the warm
start and service request jumps in low storage, and it may initialize variables in the BIOS
work area between 40h and 4Fh. Normally no other system variables are reset during a
warm start. The IOBYTE, user code, and default drive are left as they were. However,
the author has found it useful to check the drive number and, if it is invalid, to zero byte
04h. If a runaway program puts garbage in 04h, the system can be locked in a loop
issuing a message such as BDOS Error on k: select.

The jumps in the BIOS entry table are neither reloaded nor refreshed, since
DESPOOL or another such program may have modified them.

When everthing is in order, the warm start code must put the default drive and user
code (in other words, a copy of byte 04h) in register C and branch to a location 3 bytes
into the CCP. The CCP will begin the command process.

The CCP’s Autocommand Entry

The CCP can be entered at an offset of 0 bytes instead of the normal offset of 3 bytes. If
this happens, the CCP will check the byte at CCP+7; if that is nonzero, it will execute a
precoded command as if the user had typed it. The precoded command may be any valid
one; it could be, for instance, the name of a command program that is always used when
the system starts up. We'll see later how to code the command into the CCP.

The autocommand entry normally would be used only after a cold start rather than
after every warm start. This can be arranged by having the cold start code jump to
CCP+0 and the warm start code jump to CCP+3. If the two functions join in common
code prior to entering the CCP, the unique warm start code can zero the byte at CCP+7,
negating the precoded command on all but a cold start.

THE BIOS DISK FUNCTIONS

The BIOS disk functions are designed to serve the needs of the BDOS. The BDOS
requests 1/0 in terms of drives, tracks, and standard 128-byte records. The BIOS
translates these requests into disk I/O operations.

Under MP/M 2, the disk functions should never be called from a command
program. They will usually be located in a different bank of storage, not in common
storage. Calling a disk function will result in a transfer to a meaningless location.

Disk Selection

Tue SELDSK Function. The SELDSK (Select Disk) vector of the BIOS entry table
lets the BIOS know that the BDOS is planning to use a particular drive. That is the only
drive that the BDOS will be concerned about until it calls SELDSK again. The BIOS
will often do nothing about this call except to note the drive number for later functions,
because the BDOS may select a disk and then not operate upon it. Depending on a
parameter, however, the BIOS may do more.

The BIOS Disk Functions

The BIOS should check the requested drive number against its own knowledge of
the number of drives it supports; the BDOS has probably taken the drive number from a
program’s FCB and has no way of knowing whether or not such a drive exists. The drive
number might even be garbage as the result of an error in the program. The BIOS returns
zero in the HL register pair if the number is invalid.

THE Disk PARAMETER HEADER. When the disk number presented to SELDSK is
valid, the BIOS returns in the HL register the address of a structure called the Disk
Parameter Header (DPH). The DPH is used by the BDOS to locate its disk information.
The DPH contains the address of the Disk Parameter Block that we looked at so carefully
in the last chapter. It also contains the addresses of the allocation and check vectors for
this disk, and a few bytes of storage that the BDOS uses as a scratch pad (this is probably
where the BDOS keeps its memory of where to start on a Search Next service, but we
can't be sure of that).

The DPH also contains the address of a sector—actually, record—translation table,
an address that must be used as a parameter to the SECTRAN function.

SELDSK anp ReGisTERS DE. The CP/M documentation says that the only parameter
of SELDSK is the drive number in register C. The MP/M documentation specifies an
additional parameter. There, registers DE are to contain an even number (the least
significant bit of register E is to be 0) if this is the first time the given drive has been
selected since the BDOS’s information about it was initialized. Otherwise DE are to
contain 0001h, or at least an odd number.

CP/M Propuckes THE DE PARAMETER. In fact, at least since version 2.2, the CP/M
BDOS has generated the same parameter in the DE pair, and at least one common BIOS
expects and uses it. A 0 in bit 0 of register E signifies that the drive is being selected for
the first time (1) since a cold or warm start refreshed the BDOS, or (2) since service
request 13 reset the BDOS disk information, or (3) since service request 37 reset the
BDOS’s record of the drive.

Usk oF THE DE PARAMETER. The BIOS may assume that if register E bit 0 is 0, the
diskette in the selected drive may have been changed since the last select of that drive. In
that case the BIOS may read the drive to determine the density and sector size of the disk
mounted in it. A command program that calls the SELDSK entry can’t be sure whether
the drive has been used before or not. How can it know what to put in the DE pair? One
fail-safe method is to issue service request 14 (select drive) first. The BDOS will call
SELDSK with the correct parameter in DE. Then the command program can be sure that
the drive has been selected at least once and can pass DE=0001h without fear.

Track Addressing

BDOS Track CompuraTion. The BDOS views a disk as containing some number of
tracks, each having some count of standard records that are numbered from zero up to
one less than the value in the SPT (standard records per track) field of the DPB. The

249

250

The BIOS and System Generation

BDOS addresses data by computing a track number and a record number on that track. It
calls on the BIOS to select the track.

The BDOS does not know, directly, how many tracks the disk has. That informa-
tion is implicit in the DSM (maximum allocation block number) field of the DPB. The
BDOS computes a record number from an allocation block number. It arrives at a track
number by dividing the record number by the number of records on a track, and adding
the OFF (count of reserved tracks) field of the DPB.

Tue SETTRK Funcrion. Having made these computations, the BDOS calls the
BIOS at the SETTRK vector of the entry table. Most BIOSes simply note the track
number and return, deferring any disk action until it must be done. If the disk controller
interface supports interrupts and asynchronous operation, the BIOS may commence the
seek operation at this time so that it can run concurrently with the BDOS’s processing.

Record Addressing

The position of the record on the track is found as the remainder after dividing the record
number by the number of records per track. It is a value from zero up to one less than the
value of the SPT field of the DPB (note: from zero, not from one, despite the convention-
al numbering of disk sectors). The BDOS must ask the BIOS to select that record, but
first it may have to ask the BIOS to translate the record position to allow for skew.

SECTOR SKEW OR INTERLEAVE. [t is common, but by no means universal, for the
sectors of a disk to be skewed. This means that consecutive units of data are not placed in
consecutive sectors on the track. Instead, two units of data that ought logically to be
adjacent are in fact separated by some number of sectors. The purpose of skew is to
improve performance. The expectation is that the processor is more certain to be ready
for data when the data rotate under the read-write head. Skew can eliminate one
revolution’s wait for a missed sector. The effect of skew (or interleave, as it’s called with
hard disks) is to reduce the average latency of the drive.

THE SKEW TABLE ApDRESS. The BDOS finds out whether or not the disk uses skew by
checking the first word of the Disk Parameter Header structure (returned by the
SELDSK function). If that word is zero, no skew is used; the record position computed
from the record number is correct. If the word is not zero, it is the address of a translate
table in the BIOS. In this case the disk does use skew and the record position must be
translated in some way so that it addresses the correct physical position on the disk.

SKEW TRANSLATION IN CP/M 1.4, Prior to version 2.0 of CP/M, skew translation was
a simple matter. CP/M supported only single-density, 8-inch diskettes with 26 sectors
per track. A standard skew factor of six sectors was applied. To translate a record
position into a sector number the BDOS used the record position as an index into a table
of 26 bytes. The indexed byte contained the actual sector number that contained the
desired record. Programs written for earlier versions of CP/M, assuming 26 sectors and

The BIOS Disk Functions

the standard skew, sometimes do their own skew translation. Such programs are still
being published in hobbyist magazines. They won’t work in CP/M version 2 because it
supports disks that have no skew, disks that skew by more or less than six sectors, and
disks with many more than 26 sectors per track and many more than one record per
sector.

THE PROBLEM OF Disk FORMATS. Skew translation is now more complicated. A disk
sector often contains more than one record. The records that share a sector are physical-
ly, as well as logically, adjacent, but logically adjacent records that fall into different
sectors are separated. Skew translation can still be handled by indexing a table with the
record position number. However, the skew table for disks with one sector size is
different from that for disks with another sector size. There are four common sector
sizes; a drive may be loaded with a diskette that has any of the four sizes. This is why the
BIOS must pass the address of a translate table to the BDOS through the Disk Parameter
Header. Only the BIOS knows the physical sector size of the diskette currentl y loaded in
a drive; it must tell the BDOS which of four possible tables to use.

THE PrOBLEM OF Disk CapaciTy. The size of modern disks complicates matters still
more. A double-density diskette can hold 64 records per track, a hard disk even more. A
BIOS that keeps skew tables for several disk layouts can spend 500 or more bytes on
tables alone.

SKEW COMPUTATION. One way to overcome this problem is by computing the skew

" translation instead of looking it up. At least one popular BIOS does this. In this BIOS the
translate table address in the Disk Parameter Header points only to a short list of
parameters for the skew algorithm, instead of pointing to a full look-up table. The
implication for command programs is that the first word of the DPH can’t be relied upon
to point to a complete skew look-up table.

Skew AND DiskeTTE CompaTiBiLiTy. The decision of what skew factor to apply toa
diskette is left to the BIOS, and each BIOS is the work of a different vendor. Given the
same format of density and sector size, two vendors may still choose different skew
factors. Diskettes couldn’t be exchanged between the two systems because the BIOS of
the second system would read the physical sectors in a different order than they were
written by the first system. The only standard skew factor is that of 6 used with 8-inch
disks in exchange format.

Tue SECTRAN Funcrion. If the record position must be translated, there will be a
nonzero value in the first word of the Disk Parameter Header returned from the SELDSK
function. In that case the SECTRAN function of the BIOS must be called. It takes a
computed record position as a 16-bit integer in the BC register pair, and the address of a
translate table in the DE register pair. It returns the translated record position in the HL
register pair. The record position is a 16-bit number and should be saved as such, even if
you “know” that there are fewer than 256 records on a track. It might contain a
= head-select value for a double-sided diskette or multihead hard disk. 251

252

The BIOS and System Generation

CHANGING THE SKEW ADDRESS. We might ask why the BIOS must pass an address to
the BDOS when all the BDOS will do is to pass it back again. The reason for this
arrangement is that it allows the system programmer access to the skew translation
process. If you want to write a program that accesses data directly through the BIOS, you
can do so. Further, it opens the possibility that, to handle a nonstandard disk (one from
another operating system, or from a BIOS with different ideas on skew factors), you can
get the address of the Disk Parameter Header and change the address of the skew table in
it.

Tue RECTRAN ProGram. Figure 15-2 shows the source of a program called
RECTRAN. It generates all record positions from zero up to the maximum for the
selected disk, and passes each through the SECTRAN function of the BIOS. The
translated numbers that result are displayed in hexadecimal, eight per line. Example
15-1 shows what the output of RECTRAN looks like.

Run RECTRAN against different disk formats and study the patterns that result.
Read through the code of your BIOS to see how it performs the translation. Does it use a
table, or does it compute the translation?

THE SETSEC Function. Once the record position has been translated (if that was
necessary), the BDOS calls the SETSEC function of the BIOS to select the record to be
accessed. Most BIOSes simply record the record number, again deferring actual disk
operation until it is necessary.

Reading and Writing

Having addressed data by telling the BIOS the disk, the track, and the record, the BDOS
may request that the record be read or written. Before doing so it must have set a buffer
address.

Tue SETDMA Funcrion. The SETDMA function of the BIOS does exactly what
BDOS service request 26 does: it establishes the storage address of the record buffer for
following reads and writes. To a program there is no functional difference between
calling service 26 and calling the SETDMA function. The BDOS, of course, must
sometimes set a buffer address different from the one being used by a program; when the
program opens a file, the BDOS must set a buffer address for directory reading, then
reset the program’s data address.

A command program should always use BDOS service 26 to set the buffer address.
If it calls the SETDMA entry directly, the BDOS and the BIOS will thereafter disagree
on the buffer location.

Tue READ Funcrion. The READ function of the BIOS requests that it read the
standard record that has been addressed by previous calls to SELDSK, SETTRK,
SECTRAN, and SETSEC. The data are placed in the present buffer address and a
success code of zero is returned in the A register. If that code is nonzero, the BIOS had
tried several times to read the sector containing the record and failed.

The BIOS Disk Functions

* % % % % RECTRAN =-=- DISPLAY SKEW TRANSLATION

MACLIB CPMEQU ; STANDARD NAMES,
MACLIB PROG i PROLOG, SERVICE MACROS
MACLIE COSUB ; CONSOLE OUTPUT
MACLIB HEXSUB ; HEX DISPLAYS
MACLIB BIOSCALL; BIOS INTERFACE
P
PROLOG 30 ,RECTRAN
i
HEADING DB "Record skew pattern for disk *
DRIVE DB 0,CR,LF,CR,LF+80H
NOXLATE DB “that disk needs no translation.”,CR,LF+80H
NRECS DW 0 : RECORD COUNT FOR LOOP
PLENGTH EQU 16 ; NUMBERS PER LINE
NPRINT DB 0 : NUMBERS LEFT ON THIS LINE
i
RECTRAN EQU $
MVI A, PLENGTH
STA NPRINT ; INITIALIZE COUNT OF NUMBERS
LDA CPMFCB ; SEE IF DRIVE SPECIFIED
DCR A i CONVERT FCB FORM TO SERVICE 14 FORM
Jp REC2 i (YES, DRIVE GIVEN)
SERVICE 25 i OMITTED, GET CURRENT DRIVE
REC2 MOV E,A i SAVE DRIVE FOR SERVICE 14
MoV C,A { ..AND FOR BIOS SELDSK CALL
ADI “a° ; MAKE PRINTABLE,
STA DRIVE ; ..PUT IN HEADING & PRINT
LXI H,HEADING ! CALL COSTR
SERVICE L4 ; ESTABLISH DRIVE TO BDOS
SERVICE 31 ; HL==->DPB, SET DE = SPT
MOV E,M ! INX H ! MOV D,M
XCHG ; SAVE RECORDS/TRACK
SHLD NREC5 ; ..FOR LOOP CONTROL
MVI A,B$SELDSK
CALL BIDS i HL-->D.P.H., SET DE-->XLATE TABLE
MOV E,M ! INX H ! MOV D,M
MOV AE ; IF THAT ADDRESS IS ZERO,
ORA D i ..NO TRANSLATION IS DONE.
JINZ REC3
LXI H,NOXLATE ! CALL COSTR
RET + ..IN WHICH CASE, QUIT.
REC3 LXI B,0 + CLEAR RECORD NUMBER
i
RECLOOP MVI A,BSSECTRAN
CALL BIOS : HL = XLATE(BC)
CALL PRINT ; DISPLAY THE RESULT
LHLD NRECS ; DECREMENT LOOP VARIABLE
DCX H
MOV A,L ! ORA H
RZ i RETURN TO CCP IF DONE
SHLD NRECS ; SAVE LOOP COUNT
INX B i STEP RECORD NUMBER
JMP RECLOOP ; AND CONTINUE
i
PRINT CALL HEXADDR ; PRINT HL AS HEX WORD
CALL COSPACE ; ..AND A SPACE
LDA NPRINT ; SEE IF END OF LINE
DCR A
s5TA NPRINT
RNZ ; [NO, CONTINUE)
MVI A, PLENGTH
STA NPRINT ; REFRESH LINE COUNT
CALL COCRLF ; START A NEW LINE
RET

COSUBM
HEXSUBM
BIOSM
END

FIGURE 15-2

COMMON SUBROUTINES

RECTRAN displays the record positions that result from skew translation of the sequential
numbers from zero up to the number of records on a track.

253

The BIOS and System Generation

EXAMPLE 15-1
RECTRAN reveals the skew pattern of a double-density diskette with 1024-byte sectors.

Groups of eight records (one sector) are consecutive; sectors are skewed by two. ~
A»*rectran
Record skew pattern for disk A
0001 0002 0003 0004 0005 0006 0007 0008 00L9 O0LA 00LB 00LC 001D 00LE OOLF 0020
0031 0032 0033 0034 0035 0036 0037 0038 0009 000A 000B 000C 000D 000E 00OF 0010
0021 0022 0023 0024 0025 0026 0027 0028 0030 003A 003B 003C 003D 003F 003F 0040
00Ll 0012 0013 0014 00LS 00L6 00L7 00LB 0029 002A 002B 002C 002D 002E 002F 0030
A>_
Tue ErrecT oF SECTOR BUFFERING. Note that the BIOS might not do any disk I/O
when it is called on to read a record. The BIOS operates on whole sectors. If a sector
holds more than one record, and if the wanted record is already in the buffer as the result
of a prior read, no disk operation is needed. If the sector buffer is inactive or filled with a
prior sector, the BIOS will have to read the needed sector.
TrE EFFect oF WRITE BUFFERING. The BIOS might have to do two disk operations
during a READ function. If it had been writing earlier, it might have a sector of datain its
buffer that hasn’t yet been written to disk. That sector must be written in order to clear the
buffer so that the desired sector may be read.
Tue READIR PrROGRAM. The program whose source appears in Figure 15-3 reads the —
disk directory using direct calls on the BIOS. Its output should be similar to that of the
ALLDIR program of Figure 14-7, although the program is quite a bit more complicated
; * * * % % RPEADIR -- READ DIRECTORY VIA BIOS CALLS
' MACLIB CPMEQU ; STANDARD NAMES,
MACLIB PROG ; PROLOG, SERVICE MACROS
MACLIE COSUB ; CONSOLE OUTPUT
MACLIB HEXSUB ; HEX DISPLAYS
MACLIBE DPSUB ; l6-BIT ROUTINES
MACLIB BIOSCALL; BIOS INTERFACE
i
PROLOGZ READIR
HEADING DB “Physical directory entries, drive
DRIVE DB 0,CR,LF,CR,LF+80H
ERRMSG DB CR,LF, BIOS reports read error.” ,CR,LF,; 8"
DPBSDRM EQU 07H : OFFSET OF DRM FIELD IN D.P.B.
DFBSOFF EQU 0DH ; OFFSET OF OFF FIELD IN D.P.B.
NRECS DB 0 : RECORDS LEFT TO GO
READIR EQU $
LDA CPMFCB ; SEE IF DRIVE SPECIFIED
DCR A ; CONVERT FCB FORM TO SERVICE 14 FORM
JP REA2 ; (YES, DRIVE GIVEN)
SERVICE 25 ; OMITTED, GET CURRENT DRIVE
REA2 MoV E,A ; SAVE DRIVE FOR SERVICE 14
MOV c,a ;s ..AND FOR BIOS SELDSK CALL
FIGURE 15-3 -

READIR reads all the directory entries on a disk by calling the BIOS. It adds no information
254 to that shown by ALLDIR, but shows the use of the BIOS for nonstandard disk 1/O.

RECLOOP

NOXLATE

REA3

PRINT

PLOOP

e me we

ADI ‘A ; MAKE PRINTABLE,

STA DRIVE ; ..PUT IN HEADING & PRINT

LXI H,HEADING ! CALL COSTR

SERVICE 14 ; ESTABLISH DRIVE TO BDOS
SERVICE 31 ; HL-->DPB - GET DRM, OFF
MVI A, DPBSDRM

CALL DPSLDHA ; DE = LAST DIRECTORY ENTRY NUMEBER
INX D ; DE = TRUE COUNT OF ENTRIES
CALL DPSSRLD ; DIVIDE IT BY FOUR TO GET
CALL DP$SRLD ; ..COUNT OF STANDARD RECORDS.
MOV AE ; ASSUMING THAT”S < 256,

STA NRECS ; ..SAVE IT FOR LOOP CONTROL
MV A,DPBSOFF

CALL DPSLDHA ; DE = TRACK OFFSET, WHICH IS
PUSH D ; ..DIRECTORY TRACK. SAVE IT.
MVI h,BSSELDSK

CALL BIOS ; HL-->D.P.H., SET DE-->XLATE TABLE
MOV E,M ! INX H ! MOV D,M ; ..OR MAYBE 0000
POP B ; BC = WANTED TRACK NUMBER
MVI A,BSSETTRK

CALL BIOS ; ESTABLISH THE TRACK NUMBER
LXI B,0 ; CLEAR RECORD NUMBER

PUSH B ; SAVE CURRENT RECORD NUMBER
MOV A,E | ORA D ; IS TRANSLATION NEEDED?

Jz NOXLATE ; (NO)

MVI A,B$SECTRAN

CALL BIOS ; HL = XLATE(BC)

PUSH H | POP B ; BC = TRANSLATED RECORD NUMBER
MVI A,B$SETSEC

CALL BIOS ; ESTABLISH WANTED RECORD

MVI A,BSREAD

CALL BIOS ; READ THAT RECORD TO CPMBUFF
POP B ; (RECOVER STACKED RECORD NUMBER)
ORA A ; ANY PROBLEMS ON THE READ?
Jz REA3 i ..NO.

LXI D,ERRMSG; YES, QUIT

JMP ERROREXIT

CALL PRINT ; ALL OK, PRINT ENTRIES.

LDA NRECS

DCR A

STA NRECS ; UPDATE LOOP COUNT,

RZ ; RETURN TO EPILOG IF FINISHED
INX B ; UPDATE RECORD POSITION,

JMp RECLOOP ; CONTINUE.

EQU $;i DISPLAY 4 DIRECTORY ENTRIES
PUSH B ; SAVE MAINLINE’S BC

LXI H,CPMBUFF

MVI B,l6 ; NUMBER OF BYTES PER LINE
MVI c,4 ; NUMBER OF RECORDS

CALL HEXLINE ! CALL COCRLF

CALL HEXLINE ! CALL COCRLF

CALL COCRLF

The BIOS Disk Functions

DCR C ! JNZ PLOOP

CALL
POP
RET

COSUBM
HEXSUBM
DPSUBM
BIOSM
END

FIGURE 15-3 (Continued)

COCRLF ! CALL COCRLF
B

COMMON SUBROUTINES

255

256

The BIOS and System Generation

than ALLDIR. There is no benefit in reading the directory this way, but the same
techniques could be used in a program that updated the directory. You could write a
program that recovered an erased file by restoring a user code to the first byte of the file’s
extent records, for instance. Example 15-2 shows the output of READIR.

Tue WRITE Function. The WRITE function of the BIOS requests that it take the
standard record in the buffer and write it into the record position addressed by previous
calls on the BIOS. The record is taken by the BIOS and started on its way to the disk.

SECTOR BUFFERS AND PREREADING. The BIOS might have to do two disk operations
for a write. When a sector contains more than one record, the BIOS must first read the
correct sector, then move the record into it, and finally write the sector back to disk. The
initial read of a sector is called a preread, and isn’t always needed. Also, the sector write
sometimes can be deferred until it is forced by later events.

EXAMPLE 15-2
The output of READIR is identical to that of ALLDIR, save that it shows never used entries.
These are completely filled with E5h, the usual formatter fill-character.

A>readir b:
Physical directory entries, drive B

00 48 45 58 44 49 52 20 20 43 4F 4D 00 00 00 04 .HEXDIR COM....
02 00 00 00 00 0O 0O OO 00 00 00 00 00 00 00 00 L L

00 50 52 49 4E 54 20 20 20 43 4F 4D 00 00 00 80 .PRINT COM....
03 00 04 00 05 00 06 00 07 00 08 00 09 00 OA 00 cenesensnesens ‘e

00 50 52 49 4E 54 20 20 20 43 4F 4D 0L 00 00 OE .PRINT COM....
OB 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 semssessresannan

00 48 45 58 44 49 52 20 20 41 53 4D 00 00 00 OD .HEXDIR ASM....
0C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..cvvevevannnnns

E5 45 52 41 53 45 44 20 20 46 49 4C 00 00 00 80 eERASED FIL....
0D 00 OE 00 OF 00 10 00 11 00 12 00 L3 00 14 00 cestansrEnEnnees

E5 45 52 4L 53 45 44 20 20 46 49 4C 0l 00 00 80 eERASED FIL....
15 00 L6 00 17 00 18 00 L9 00 LA 00 LB 00 LC 00 eucanss sesse

E5 45 52 41 53 45 44 20 20 46 49 4C 02 00 00 7E eERASED FIL....
1D 00 LE 00 LF 00 20 00 21 00 22 00 23 00 24 00 vawere wbe®oh 8,

02 55 53 45 52 2D 32 20 20 46 49 4C 00 00 00 80 .USER-2 FIL....
25 00 26 00 27 00 28 00 29 00 2A 00 2B 00 2C 00 oo (e a®atuys

02 55 53 45 52 2D 32 20 20 46 49 4C 0L 00 00 OE .USER-2 FIL....
2D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 —errrssass senees

E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 eeeecececeeeeeeee
ES5 E5 E5 ES5 E5 ES E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 eeeeeceeeeeeeeee

E5 E5 E5 E5 E5 (display continues for many lines)

A>_

The BIOS Disk Functions

DEFERRED WRITES. Most program output is sequential; there is a hi gh probability that
the next write will be directed to the next record in the same sector. In that case deferring
the sector write will allow the BIOS to avoid the next preread. On the other hand, if the
program alternates reading and writing, the read requests will force out the written
sectors so that every write requires a preread and every read forces a write. In that event
three disk operations will be done for every two program accesses. This could be avoided
by the use of two sector buffers, one for reading and one for writing, but most BIOSes
can’t afford that much space,

WRITE PARAMETERS. The WRITE function takes a parameter in register A. That
parameter is an indication from the BDOS to the BIOS of the purpose of the write
operation. The BIOS can increase the performance and the reliability of the system by
recognizing this code. If you write a program that calls on the WRITE function, you
must be sure to provide a valid parameter.

WRITE 2: UNALLOCATED DaTA. When the write parameter is 2, the record is the first
to be written to its allocation block. An allocation block usually corresponds to one or
more whole sectors. Usually the sectors that comprise an allocation block are contiguous
(logically contiguous; they may span a track boundary, and skew must be considered).
When the BIOS knows it is writing the first record of an allocation block, it can skip
prereading that sector; the other records of the sector (and of the allocation block) can’t
have any useful data in them.

~ WRITES FOLLOWING A WRITE 2. Write 2 occurs only for the first record of a block: all
other records of the block are passed under write 0. The BIOS can verify that each
successive write follows sequentially on the prior one. As long as they do, and as long as
no reads intervene to force out the buffer contents, the BIOS can collect and write sectors
without prereading. The CP/M 2.2 Alteration Guide contains an example of this logic.

WRITE 0: ORDINARY DATA. When the BDOS is handling any record other than the
first of an allocation block (or a direct access write to any record), it passes write
parameter 0. If the BIOS finds that the record continues an unbroken series from the last
write 2, it can avoid a preread. Otherwise it must read the sector into which the record
falls and place the record among the others in the sector. It may then defer writing the
sector back to disk in hopes that the next write will fall in the same sector.

PERFORMANCE IMPLICATIONS. Any command program can be designed to make the
most of write buffering. A read will break the chain of buffered writes: so will a write to a
different file. Best performance is realized when the program reads and writes data in
long bursts. Only a single large buffer is needed for this. The program either may read
one record at a time while accumulating output in the large buffer, or it may read records
to fill the large buffer and then write single records as they are produced. Either way, it
transfers a large amount of data for each file before switching to the other.

WriTE 1: DIRECTORY DATA. If the write parameter is 1, then the record is part of the
" disk directory. A preread has to be done. The sector should be written immediately; a 257

258

The BIOS and System Generation

directory write should never be deferred. If the sector write is deferred, a reset signal or
program error can prevent the data from reaching the directory. That risk is tolerable for
file data—if the program bombs or is aborted, the files are expected to be incomplete—
but it is not tolerable for directory data. The sector may remain in the buffer so that a
preread can be avoided in the unlikely event that the next access addresses the same
sector, but the data should be transferred to disk at once.

THE BIOS SERIAL 1I/O FUNCTIONS

The BIOS functions that deal with serial 1/O are needed to make the BDOS (and all
programs) device independent. It is up to the BIOS to direct the flow of serial data
according to the current device assignments. With one unimportant exception, all of the
serial I/O functions provided by the BIOS are also provided as service requests through
the BDOS. There are no advantages, and several disadvantages, to calling directly on the
BIOS for serial I/0.

Functions for Logical Devices

The BIOS provides seven functions that deal with the four logical devices of CP/M.,
Three of these are related to CON:, the logical console; two support LST:, the logical
printer; and the remaining two operate the logical reader and punch. Example 15-3
shows the code of these services as it would appear in a typical BIOS.

ConsoLe Funcrions. The three console functions are CONIN, CONOUT, and
CONST. CONIN must determine which device is currently assigned as the console, get
a byte from it, and return that byte in the A register. It is CONIN’s responsibility to clear
bit 7, the parity bit, of a received byte to zero.

The CONOUT function is given a character in the C register. It must find out which
device is currently assigned as the console and transmit the byte to it. The BDOS always
clears bit 7 of the byte before calling on CONOUT.

EXAMPLE 15-3
Code from a typical BIOS, showing support of logical I/O devices. Note the code for the BAT:
device. BAT: is useful when a serial input device for RDR: exists (a modem, for example).

. THE FOLLOWING ROUTINES DO LOGICAL I/O ACCORDING TO THE IOBYTE.
. “CRT® IS THE H19 TERMIMAL DRIVEN FROM THE 2810 CPU SERIAL PORT,
. “LPR’ IS THE DIABLO 1650 KSR ON THE GODBOUT BOARD AT 2A/2B.

: “AUX” IS A SERIAL DEVICE ON THE GODBOUT BOARD AT 28/29

;
H
; ROUTINE CONI IS THE CONSOLE INPUT ROUTINE CALLED FROM THE BIOS

; JUMP TABLE UP FRONT. IT ADDS THE PARITY-STRIP THAT CP/M REQUIRES.
; BIOS ROUTINES CALL “CI” STRAIGHT.

i

c

ONI : CALL CI : GET THE NEXT CHARACTER

ANI 7FH : STRIP OFF THE PARITY BIT
RET

EXAMPLE 15-3 (Continued)

The BIOS Serial 1/0O Functions

CONMSEK
CONMID
RDRMSK
RDRMID
PUNMSK
PUNMID
LSTMSK
LSTMID

CO:

CSTS:

i
BATST:

CI:

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

LDA
ANI
CPI
JM

JNZ

LDA
ANI
JZ
CPI
JM
JMP

LDA
ANI
CPI1
JM

JNZ

LDA
ANI

CPI
JM

Jz

JMP
LDA
ANI
CPI

JNZ

LDA
ANI
JZ

LDA
ANI
JZ
CPI
JM
Jz
JMP

LDA
ANI
JZ
CPI
IM
JMP

LDA
ANI

CPI
IM
JZ
JMP

03H
02H
0CH
08H
30H
20H
0COH
8OH

IOBYTE
CONMSK
CONMID
CRTOUT
LPROUT

IOBYTE
LSTMSK
NULoUT
LSTMID
CRTOUT
LPROUT

IOBYTE
CONMSK
CONMID
CRTIST
LPRIST

IOBYTE
RDRMSK
IOER
RDEMID
AUXIST
LPRIST
CRTIST
IOBYTE
CONMSK
CONMID
CRTIN
LPRIN

IOBYTE
RDRMSK
I0ER

IOBYTE
RDRMSK
NULIN
RDRMID
AUXIN
LPRIN
CRTIN

IOBYTE
LSTMSK
NULOST
LSTMID
CRTOST
LPROST

IOBYTE
PUNMSK
NULOUT
PUNMID
AUXOUT
LPROUT
CRTOUT

e %

- P s

- LT s we e

S -~ ma me

e we we

e

~

. o w

MASK TO STRIP OUT CON ASSIGNMENT
PIVOT VALUE FOR COMPARING

MASK TO STRIP OUT RDR ASSIGNMENT
FIVOT VALUE FOR COMPARING

ETC..

CONSOLE OUTPUT
ISOLATE CONSOLE ASSSIGNMENT

CON = TTY,CRT = HL9
CON = UCL = 1650
CON = BAT = FALL INTO LIST OUT

LIST OUTPUT
ISOLATE LIST ASSIGNMENT
LST = TTY = NULL OUTPUT

CRT = HL9
LPT,ULL = 1650

LST
LT

CONSOLE STATUS
ISOLATE CONSOLE ASSIGNMENT

CON = TTY,CRT = HI19
CON = UCl = 1650
CON = BAT = FALL INTO RDR STATUS

(USED ONLY FOR COM: = BAT:)
ISOLATE READER ASSIGNMENT
REDR = TTY = NUL INVALID FOR BAT:

RDR = PTR = AUX PORT
RDR = URL = 1650
RDR = UR2 = HL9

CONSOLE INPUT
ISOLATE CONSOLE ASSIGNMENT

CON = TTY¥,CRT = HI19
CON = UCl = 1650
CON = BAT = USE RDR..

..IF IT"S VALID
RDR = TTY = NUL WRONG FOR BAT:
READER INPUT

ISOLATE READER ASSIGNMENT
RDR = TTY = NUL DEVICE

RDR = PTR = AUX DEVICE
EDR = URL = 1650
RDR = UR2 = HI19

LIST OUTPUT STATUS
ISOLATE LIST DEVICE ASSIGNMENT
LST = TTY = NULL DEVICE

LST = CRT = HIL9
LST = LPT,ULl = 1650

PUNCH OUTPUT
ISOLATE PUNCH ASSIGNMENT
PUN = TTY = NULL DEVICE

PUN = PTP = AUX DEVICE
PUN = UPl = 1650
PUN = UP2 = HIL9

259

260

The BIOS and System Generation

The CONST function is called to discover the input status of the console device,
that is, whether it has a byte ready for input or not. CONST is expected to return FFh in
the A register if a byte is ready, and 00h if one is not.

ConsoLE I/0: BDOS versus BIOS. Hobbyist magazines often publish CP/M prog-
rams that perform console 1/O using these BIOS functions. This is lamentable. The
BIOS functions provide none of the user services that are part of the similar service
requests provided by the BDOS. Console output sent through CONOUT cannot be
suspended with control-s nor can it be copied to the printer with control-p. Console input
obtained through CONIN cannot be supplied by XSUB, nor can the user correct typing
errors or cancel the program with control-c. The overhead imposed by the BDOS is
trivial compared with the human advantages to be gained by using service requests for
console I/O.

In the last chapter we noted that control-s and -p aren’t always effective during
BDOS operations either. That doesnt affect the main point. Control-p can be hit before a
command is started. Then any BDOS output the command does will be copied to the
printer, but no BIOS output will be.

PrinTER FUuncTiONs. The BIOS provides two functions for the logical printer. The
first is the LIST function. It is passed a byte in register C. LIST must find out which
device is assigned to LST: and send the byte to it. The BDOS always sets the parity bit to
0 before calling the LIST function.

The LISTST function is a convenience for Digital Research’s background print
utility, DESPOOL. That program gets control whenever a console input service request
is issued. It needs to know if the printer is ready to accept a byte or not. If it is ready,
DESPOOL will send a byte to the printer before letting the current service request
continue. LISTST has the job of finding out whether or not the device now assigned to
LST: is ready to receive a byte. LISTST returns the same signals in register A as
CONST does.

READER AND Punch Funcrions. The CP/M BIOS has an entry called READER,
which returns a byte from the device currently assigned to RDR:, and an entry called
PUNCH, which takes a byte and sends it on to the device assigned to PUN:. The rules
for the two entries are identical to the rules for CONIN and CONOUT respectively.

READER AND Punch UnpEr MP/M. Under MP/M these two entries will be null,
consisting only of RET instructions. MP/M does not have support for the logical devices
RDR: and PUN:. Instead it defines all serial devices as “consoles.” Under MP/M, a
program that would, under CP/M, use the RDR: and PUN: logical devices must attach a
separate process whose console is the device to be operated. That subordinate process
can be device independent as the CP/M program can, but the program that uses this
technique will be system dependent; it will only work under MP/M.

BIOS Support of the Physical Devices

A BIOS may be written to ignore device assignments. The BDOS calls on the BIOS
function that corresponds to the logical device it wants. The BIOS may have a single,

The BIOS Serial 1!'O Functions

fixed mapping from these logical devices to physical devices. In such a system the use of
STAT to display and change device assignments is still possible, but it has no effect.

Use oF THE IOBYTE. It is preferable that the BIOS recognize and support device
assignment. When this is done, the code of each logical device function does nothing but
determine which physical device is needed and branch to the driver for that device. The
active device assignments are encoded in the IOBYTE at 03h in Low Storage. The code
in Example 15-3 shows how that byte can be used by the logical device functions. The
sequence of tests and branches in these routines determines the meaning of the device
assignments. For example, the design of the LIST routine in Example 15-3 determines
that if LST: is assigned to TTY:, printer output is to be thrown away; if to CRT:, then
printer output is to go to the terminal (not the logical console but the physical terminal).
If the assignment is to either PRT: or UL1:, then the output is to go to the physical
printer.

DEevice Drivers. Each physical device is given one or more driver routines of its
own. These routines—rarely more than half a dozen instructions—receive control from
the logical device routines and return directly to the caller of the BIOS. Example 15-4
shows a typical set of physical device routines such as would be called by the logical
device code of Example 15-3.

The device routines don’t care what logical device they were called for. The
CRTIN routine of Example 15-4 may be called by either the CONIN or the READER
routines of Example 15-3. The CRTOUT routine may be called by any of the CON-
OUT, LIST, or PUNCH routines, depending on the current assignments. A device such
as a terminal, which may be assigned to either list or console, must have both an input
status routine and an output status routine.

CUSTOMIZING THE BIOS

The BIOS is prepared like any other assembly language program, although its testing
requires some care. There are usually a number of ways in which a BIOS can be
improved. Such improvements are satisfying, but must be made with care because the
whole system depends on their correctness.

Changing the Storage Size

Tue BIOS Base Appress. The simplest BIOS change is a change in the size of
working storage. The BIOS resides in the highest possible locations in storage. It is
prepared as an absolute assembly with its origin set high enough that the end of the BIOS
is as high as possible in working storage. The BIOS base address must allow for the
buffers it needs, and for the presence of any fixed ROM or disk hardware windows in
storage.

CHANGING THE BASE. Probably your BIOS looks much like the example shown in
Appendix C of the CP/M Alteration Guide, with features from the sector blocking code

261

262

The BIOS and System Generation

EXAMPLE 15-4

Code from a typical BIOS shows the drivers for physical devices, including null ones. Details

of device handling will be different in every installation.

L
AUXDATA
AUXSTAT
LPRDATA
LPRSTAT

i
SERDTR
SERTXBE
SERRXBF

NULOST
NULIST

NULIN
NULOUT

CRTIST

i
CRTIN

CRTOST

i
CRTOUT

s s mm

AUXIST

ARUXIN

i
AUXOST

: PATHS HAVE “XXXOST”
; THE DEVICE MONICKER IN ALL CASES.

EQU
EQU
EQU
EQU

EQU
EQU
EQU

EQU
ORI
RET
MVI
EQU
RET

IN
ANI
RZ
ORI
RET

CALL
J2
N
RET

IN
ANI
RZ
ORI
RET

CALL
Jz
MOV
ouT
RET

IN
ANI
RZ
ORI
RET

CALL
JZ
IN
RET

IN

28H
29H
2AH
2BH

04H

0LH
02H

$
OFFH

1AH
$

SLSTAT
RXRDY

0FFH
CRTIST

CRTIN
SDATA

SLSTAT
TEMTY
OFFH
CRTOST
CRTOUT

A,C
SDATA

AUXSTAT
SERRXBF

OFFH

AUXIST
AUXIN
AUXDATA

AUXSTAT

[

s o=

-
H
’
¥
¥

THE I/0 DRIVERS START HERE. EACH DATA PATH HAS TWO ROUTINES:
A STATUS ROUTINE AND A TRANSFER ROUTINE. INPUT PATHS HAVE A

ROUTINE “XXXIST® (INPUT STATUS) AND A ROUTINE “XXXIN®. OUTPUT
(OUTPUT STATUS) AND “XXXOUT” -- XXX BEING

MODEM OR WHATEVER
DIABLO 1650 KSR
DATA TERMINAL READY BIT

TRANSMIT BUFFER EMPTY
RECEIVE BUFFER FULL

; THESE ARE THE DRIVERS FOR THE NULL DEVICE

NULL OUTPUT ALWAYS OK
NULL INPUT ALWAYS READY

NULL INPUT ALWAYS CTL-2Z (EOF)
NULL OUTPUT IS A NO-OP

; THESE ARE THE DRIVERS FOR THE CRT, USING VENDOR’S CODE.

GET 8250 LINE STATUS
RECEIVE BUFFER READY?

(NOPE, EXIT A=00)
YES, A=FF

WAIT FOR DATA READY

READ IT
EXIT, A=XX

GET 8250 LINE STATUS

CHECK TRANSMIT BUFFER
(STILL WORKING, A=00)

BUFFER AVAILABLE,
A=FF

WAIT FOR BUFFER EMPTY

CQUTBYTE IS IN C
SEND IT

THESE ARE THE DRIVERS FOR THE AUXILIARY GODBOUT PORT

GET UART STATUS

CHECK RECEIVE BUFFER
{NO DATA, A=00)

BYTE READY

WAIT FOR A BYTE

GET IT

GET UART STATUS

—

EXAMPLE 15-4 (Continued)

Customizing the BIOS

= ANI SERDTR

Jz AUXOST1
XRA A
RET

AUXOSTL IN AUXSTAT
ANI SERTXBE
RZ
ORI OFFH
RET

AUXOUT CALL AUXOST
Jz AUXOUT
Mov A,C
ouT AUXDATA
RET
PAGE

i

LPRIST IN LPRSTAT
ANI SERRXBF
RZ
ORI OFFH
RET

LPRIN CALL LPRIST
Jz LPRIN
IN LPRDATA
RET

LPROST IN LPRSTAT
ANI SERDTR
Jz LPROSTL

= XRA A

RET

LPROSTL IN LPRSTAT ;
ANI SERTXBE
RZ
ORI OFFH
RET

LPROUT CALL LPROST
J% LPROUT
MOV a,C
ouT LPRDATA
RET

:

THESE ARE THE DRIVERS FOR THE PORT TIED TO THE 1650

.
i
.

;

;7 CHECK RECEIVE BUFFER

CHECK DATA TERMINAL READY

(SERDTR=0 MEANS “READY")

DEVICE UNREADY OR BUSY
RETURN A=00

DEVICE IS READY, IS UART?

CHECK XMIT BUFFER

(STILL SENDING, A=00)

ALL OK, RETURN A=FF

WAIT FOR ALL-CLEAR

SET UP DATA,
SEND IT.

GET UART STATUS

(WO DATA, A=00)
BYTE READY

WAIT FOR A BYTE

GET IT

GET UART STATUS

CHECK DATA TERMINAL READY

(SERDTR=0 MEANS “READY”)

DEVICE UNREADY OR BUSY
RETURN A=00

DEVICE IS READY, IS UART?

CHECK XMIT BUFFER

(STILL SENDING, A=00)

ALL OK, RETURN A=FF

WAIT FOR ALL-CLEAR

SET UP DATA,
SEND IT.

of Appendix G in that book. If that is the case, then all you need to do to change the origin
of the BIOS is to change the value of the equate label msize at the front of the source
program, and reassemble. If the author of the BIOS didn’t follow the Digital Research
examples, then you must determine what the assembly origin ought to be and change it.
In either case be careful that all of the BIOS, including the buffers and variables at the
end of the assembly, fits inside of storage. Both ASM and MAC will allow the assembly
location counter to overflow past FFFFh without giving you any warning.

Changing the Disk Functions

~— The disk functions of a BIOS make an interesting and educational study, but there is
rarely any need to alter them. If you do so, you may find it hard to convince your dealer

263

The BIOS and System Generation

that you have a problem with the disks. The dealer may demand that you demonstrate a
failure using a stock BIOS.

Disk ERROR REPORTING. One area that can sometimes be improved with little
alteration of the code is that of disk error reporting. Most BIOSes don’t display any
information about a disk error; they simply tell the BDOS that one occurred. You may be
able to find a place to stow the track, sector, and command of the operation that failed so
that you can retrieve them with DDT after a failure. You could add code to display that
information on the terminal when an error happens, or you might prefer to write a
command that retrieves and displays the stored information after the fact.

Sorr-ERROR STATISTICS. If there is room in the BIOS to store it, it would be nice to
keep a count of the number of recoverable errors that occur on each drive. A command
could then be written that would display and clear the count, or add it to a file so that you
could spot a trend of increasing error frequency and relate it to a specific drive or
diskette.

DeLering Unusep TaBLEs. Some BIOSes contain tables and code to handle many
different kinds of disks. If you have only a few disk types, you can gain space in the
BIOS by deleting the unneeded tables. Rather than remove the statements that define
them you should use conditional assembly. Surround the unwanted tables and the code
that names them with IF statements controlled by equate variables with meaningful
names. Then you can change the equates to bring the tables back into the BIOS later.

Changing the Serial I/O Functions

The serial I/O functions must be changed whenever a new device is added to the system
and whenever you change the address or controlling board of a serial port. These changes
are easy to make and, since they don't affect the integrity of disk files, they are safer and
cause less anxiety than disk changes.

IOBYTE Support. There are a lot of convenience features you could add to the serial
device functions. An obvious change is to make the BIOS support device assignment, if
it doesn't already do so.

PrINTER HANDSHAKING. If your printer support doesn’t shake hands with the printer,
you should look into making it do so. Most serial ports can be made to pass the state of
the Data Terminal Ready line through to your code, and most printers can be set up to
report their status on it. It’s very nice to know that when the printer runs out of paper,
printing will stop until paper is loaded, then pick up smoothly from where it left off.
There is a minor performance advantage in having printer data transferred at the printer’s
maximum rate, with the BIOS waiting whenever the printer’s buffer is full. The
advantage is minor because the average transmission rate will be exactly the rate at
which the printer puts letters on paper. Only during the last buffer’s worth of data is the —
264 processor free for other commands.

Customizing the BIOS

INTERRUPT-DRIVEN TERMINAL I/0. One very useful enhancement is to make the
terminal into a buffered, interrupt-driven device. This requires a fair amount of code,
perhaps more code than will fit in the BIOS. The cold start function must set up the
interrupt vectors and condition the terminal controller for interrupts. There must be an
interrupt handler to receive and buffer data, and the output code must send the data if the
terminal is idle or buffer the data for the interrupt routine to send if the terminal is active.
The user must be given some signal—perhaps the break key, which has no use under
CP/M—to cancel any characters typed but not yet processed.

Once this has been done an experienced user can type commands ahead of the
system. This is a feature that must be used to be appreciated, but once you’ve had it
you’ll never want to be without it.

Testing BIOS Changes

Unless a BIOS change is very simple—a change in the size of storage or the address of an
1/O port—you’d be wise to test the change before generating a new system. It isn’t easy
to give the BIOS a thorough test, but it isn’t hard to give it a simple shakedown that will
turn up any gross errors. The following technique will work for BIOS changes that don’t
affect the action of the console.

The testing method relies on the fact that all BIOS calls are made throu gh the BIOS
entry table. Prepare a small driver program to issue the service requests that will trigger
the changed code of the BIOS. Append the altered BIOS to the end of the driver program
source, with its origin set just past the end of the driver code. Assemble the combined
program.

Load the assembled driver and the test BIOS under DDT. Use DDT to alter some of
the jump instructions in the real BIOS entry table to point to the corresponding entries of
the test BIOS. Use the DDT Go command to run the driver program, with breakpoints in
the test BIOS (the SID and ZSID debuggers are useful in this case, for they allow you to
set multiple, permanent breakpoints). Step the test BIOS through the changed code. At
the end of the test don’t forget to do a cold start in order to refresh the real BIOS entry
table.

SYSTEM GENERATION

When you change the BIOS or the size of working storage, you must generate a new
image of the Monitor and store it on the bootstrap tracks of a disk. This is a fairly simple
process provided you understand what each step is meant to accomplish.
Be aware that some system vendors have their own versions of the system genera-
ion procedure. We can’t cover all the variations here. We’ll look at how a standard
~— system generation is done. You’ll have to find out what extra aids or impediments your
system’s vendor has added to the procedure. 265

266

The BIOS and System Generation

The Bootstrap Tracks

The aim of system generation is to get a modified version of the Monitor—CCP, BDOS,
and BIOS—written onto the bootstrap tracks of a diskette. It’s a simple thing in concept
but complicated by diskette format.

StANDARD BooTsTrRAP. The standard diskette for CP/M is a single-density, 8-inch one
with twenty-six, 128-byte sectors per track. The first two tracks are always used for
bootstrap on such a diskette. That provides 52128, or 6656, bytes of space for the image
of the Monitor. The standard Monitor comes very near to filling that space.

Tue ProsLEM oF BIOS Size. When a BIOS expands with the addition of sector-
buffering logic and IOBYTE support, it often pushes the Monitor size above 6656 bytes.
Note that this is only the result of code size. The extra buffer space required for sector
buffering affects the location of the Monitor in storage, but the buffers aren’t recorded on
the bootstrap tracks. All vendors have their own solutions to the problem.

TrE No-BUFFERING SoLUTION. Some vendors keep the BIOS simple (and thus small)
by handling only 128-byte sectors regardless of disk density. Physical sectors map
directly to record numbers. Unfortunately that violates the IBM standard for double
density and often leads to reliability problems with double-density recording. It also
causes disk incompatibility, as vendors who follow the IBM standard won’t read
128-byte sectors at double density.

THE DousLE-Loap BIOS SoLution. Another solution is to make cold start a two-
step operation. The Monitor on the bootstrap tracks is recorded with a small, simple
BIOS. The full-function BIOS is recorded together with a relocation program as an
ordinary .COM file. The precoded command in the CCP is set up to invoke the command
that loads the larger BIOS. During cold start the Monitor loads with a simple BIOS. The
precoded command causes the full BIOS to be loaded as a command. The command
relocates the BIOS dynamically and moves it into place. The problem is solved, but two
disadvantages follow. The full-BIOS command must be present on every bootable
diskette, and a cold start (but not a warm one) takes longer.

Tue DousLE-DENsITY SoLuTioN. An IBM standard double-density diskette has a
single-density first track with twenty-six, 128-byte sectors. Its second track is double-
density with the number and size of sectors desired. The extra capacity of the second
track is usually enough to allow the full Monitor to fit the bootstrap tracks. Systems that
use the double-load solution with single-density diskettes may not need it on double-
density ones.

DousLE-DENsITY Track 0. Some vendors format all tracks of the diskette to the
desired density. That gives ample space on the two bootstrap tracks, and simplifies the

—

System Generation

BIOS as well, for it needn’t treat track 0 as a special case. However, such diskettes aren’t
“IBM standard” (although the vendor may choose to overlook this fine point in the
documentation). More to the point, diskettes from “IBM standard” systems can't be read
by these systems because they expect the entire diskette to be recorded at the density used
on track 0.

Tae ROM SoLution. Some systems incorporate a ROM monitor permanently lo-
cated in the highest addresses. Since it’s there, the BIOS may as well make use of it.
Doing so may take enough code out of the BIOS to allow it to fit on any bootstrap tracks.

OrHER CONFIGURATIONS. None of the foregoin g applies to systems that boot from
S-inch diskettes, or from double-sided diskettes of either diameter. Here the arrange-
ment of bootstrap tracks is entirely up to the vendor, although the bootstrap tracks will
always be the lowest numbered so that the OFF value of the Disk Parameter Block can
account for them,

The MOVCPM File

The CCP and BDOS are distributed as part of a remarkable command called MOVCPM.
This command is central to system generation, and we must look at it in detail—first as a
file, then in execution as a command, We'll give addresses in MOVCPM as it is loaded
in the TPA (assuming a standard TPA at 0100h).

The Funcrion oF MOVCPM. The purpose of MOVCPM is to prepare and leave
behind in storage an image of the CCP and BDOS, relocated for the storage size of the
system. That image can then be written to the bootstrap tracks by a different program.

ThE ExecutaBLe PART. MOVCPM contains several parts. At its lowest addresses
lies an executable program whose function is to relocate the addresses in the CCP/BDOS
image to a different origin. When we speak of MOVCPM as a command we'll be
speaking of this program.

THe Bit Map. Following its executable part MOVCPM contains a bit map with 1 bit
for each byte of the CCP/BDOS image. Where a bit is 1 the corresponding byte is the
most significant byte of an address. Relocation is done by adding a page (256-byte unit)
offset to each byte of the image that is marked in the map. (The same relocation method
is used in MP/M, where such files are given the .PRL—page relocatable—filetype.)

BooT LoaApER SpACE. From addresses 0900h through 09FFh, MOVCPM contains
space in which the vendor may place a bootstrap loader program. The final Monitor
image will be written to disk beginning from 0900h; this space determines the contents
of the first and second bootstrap sectors.

Not all boot loaders fill two sectors. If the vendor can fit the loader into 128 bytes, it
is placed in 0980h to 09FFh, leaving 0900h through 097Fh cleared to zero. This

~— causes MOVCPM to take special action, as we’ll see.

267

268

The BIOS and System Generation

Tue VENDOR’s LoADER. The vendor will have placed a loader in your copy of
MOVCPM. It is an absolute assembly with the origin required by the hardware ROM
that loads it, usually 00h or 80h.

Tue CCP anxp BDOS Imaces. From OAQOh through 1FFFh (1600h, or 5632
decimal, bytes), the MOVCPM file contains the image of the CCP and BDOS. The
programs have been assembled to some origin. The standard origin is 3400h. The
vendor may have replaced the standard programs with programs assembled to a lower
origin in order to make room for a larger BIOS. Itis usual to move the Monitor down by 2
KB (800h bytes) to make room in storage for sector buffers. Therefore, your CCP/
BDOS image may have an origin of 2C00h, 800h lower than the standard.

Tue DistriButedD BIOS. At 2000h, following the CCP and BDOS images,
MOVCPM contains a BIOS. This may be the BIOS that you can read in Appendix B of
the CP/M Alteration Guide. If so, it is useless in your system and of no interest. On the
other hand, your vendor may have installed a BIOS customized for that vendor’s
standard hardware configuration. In that case it may be perfectly usable.

The MOVCPM Command
The form of the MOVCPM command is
MOVCPM size flag

The first operand, size, states the size of storage as a decimal number of kilobytes. It may
be given as an asterisk, meaning “measure the present size.” The flag operand is either an
asterisk, or omitted entirely. We'll deal with it later.

When you issue the MOVCPM command, the file is loaded into the TPA and given
control as usual.

SerIAL NumBER CHECKs. The command compares the CP/M serial number in the
command against the serial number in the active BDOS in high storage. If they aren’t the
same, it issues an error message and ends. MOVCPM contains safeguards so that it can’t
be stepped past these checks under DDT. The result is that MOVCPM for one person’s
system can only be executed under that person’s Monitor. You can’t run your copy of
MOVCPM under a Monitor booted from someone else’s disk.

COMPRESSING A SMALL Loaper. If the space from 0900h through 097Fh contains
zeros, MOVCPM now copies the code image, from 097Fh to the end, downward by
80h bytes. This ensures that all bootstrap sectors will be in use. If your loader is only 128
bytes (many are), the resulting addresses are

Loader: 0900h to 097Fh
CCP/BDOS: 0980h to 1F7Fh
BIOS: 1F80h for length of BIOS

System Generation

ReLocating CCP ano BDOS. MOVCPM uses its first operand to determine the
desired system size. If that was given as an asterisk, it tests each byte of storage until it
finds one that can’t be modified and uses that size.

The command scans the bit map and relocates each marked byte by the difference
(in page units) between the standard system size of 24K and the specified size. Note that
this relocation factor is independent of the assembly origin of the BDOS and CCP. They
presumably are assembled to an origin that leaves adequate BIOS space in a 24K system;
the relocation factor is the amount by which they have to be moved up in order to have the
same relationship to the end of the existing system.

MODIFYING THE LOG-ON MESSAGE. The MOVCPM command searches through the
BIOS area beyond the BDOS image. If it can find the character constant K CP/M vers
2.2, CR, LF, it places two decimal digits—the value of the system size—in the 2 bytes
preceding the string. This nice little service sets up the log-on message issued by the
BIOS (xxk CP/M vers 2.2) to display the correct storage size.

THE SEcoND OpPERAND OF MOVCPM. The second, flag, operand of MOVCPM
determines what it will do after relocating the CCP and BDOS images. If the second
operand is omitted, it will copy those images to the proper place in storage so that they
are located at the correct address for their new origin. MOVCPM will then jump to the
cold start entry point of the newly moved BIOS. Unless your vendor has installed a
customized BIOS in MOVCPM, this is not likely to produce any useful result.

The second operand should always be given as an asterisk. That tells MOVCPM to
terminate with a warm start, leaving the relocated images behind in storage.

Saving the Relocated CCP and BDOS

After MOVCPM terminates working storage from 0900h through 1F80h contains the
image of the bootstrap loader, CCP, and BDOS that you want in your system. It lacks
only your BIOS. It should be saved at once with the SAVE command:

save 31 name.COM

Now you can retrieve those images with DDT. These two steps (MOVCPM and SAVE)
can be done once when you receive CP/M; they needn’t be repeated unless the size of
storage, and hence the origin, is changed.

Adding the BIOS

You have assembled and tested the new BIOS. It has been assembled to the absolute
origin it will have when the system is running. All that remains is to attach it to the
images of the CCP and BDOS, and put the combined program image on disk.

Loap tHe CCP/BDOS IMAGE. Load the relocated CCP and BIOS (the saved .COM
file) under DDT. The BIOS will go into this image beginning at 1F80h and extend for

269

270

The BIOS and System Generation

some length. Use the DDT fill command to fill that area with some known value: 00h, or
perhaps E5h.

CompUTE THE Loap OFFseT. Your BIOS has its assembled origin, but you want to
load it into storage at 1F80h. Use the DDT hex command to find the difference between
the two addresses:

h1f80,origin

supplying the origin of the BIOS. The difference between the two numbers is the offset
that you want DDT to use when loading the .HEX file that contains the BIOS. The
difference will be a large hexadecimal number. Load the file:

ibiosname.hex
rdifference

Then use the DDT display and list commands to make sure that the BIOS image is in fact
now in storage from 1F80 to its end.

THE PrRECODED COMMAND. It's now time to install a precoded CCP command if
you'll use one. Use DDT to display the 129 bytes beginning at CCP +7 (0987h-0A07h
with a small loader, or 0AQ7 to 0A87 with a 256-byte loader). The byte at CCP +7 will
contain the length of the command string in hex. The command itself is entered into the
buffer beginning at CCP+8. It may be 127 bytes long, and must end with a byte of 00h
(not counted in the length). The easiest way to prepare the command is as an assembly
program:

CCP EQU 0980H ;— or 0AQON?

ORG CCP+7

DB CMDEND-CMDSTART
CMDSTART DB 'THIS IS THE COMMAND'
CMDEND DB 0

END

Assemble the program beforehand, then load its .HEX file with DDT.

CompuTE THE END ApDRESS. Examine the BIOS listing and find the end address that
encompasses all code and initialized values but which excludes uninitialized buffers and
tables (they won’t be written to disk). Add the difference value to find the location of the
end in the storage image. It will usually agree with the end address displayed by DDT
after it loaded the BIOS file.

SAVE THE MoniTor IMAGE. Once again, save the merged images as a.COM file. Use
the number of pages that will save all of the image through the end of the BIOS.

System Generation

The SYSGEN Command

SYSGEN’s Sources. The purpose of the SYSGEN program (supplied by your
vendor) is to write an image of the Monitor onto the reserved tracks of a disk. SYSGEN
will obtain the Monitor image in one of two (or possibly three) ways. Most SYSGEN
programs take no command operand. Usually the command requests the letter of a drive
that contains a diskette from whose bootstrap tracks it can read a Monitor image. If the
question is answered with a null line, the command assumes that the image is already in
storage where MOVCPM leaves it (0900h and up).

The SYSGEN distributed to vendors by Digital Research has the ability to take a
fileref as its operand. If a fileref is given, that SYSGEN will load the named file at
0900h and use it as the Monitor image. You might experiment with your vendor's
SYSGEN to see if it has this ability.

UsiNng SYSGEN. The first SYSGEN is done as follows. Prepare a new diskette and
mount it. Use DDT to load the saved Monitor file into storage. End DDT. Call
SYSGEN and tell it (with a null response) that the image is already in storage. Give it the
letter of the drive where the new diskette was mounted. It copies the image, beginning at
0800h, onto the bootstrap tracks of that diskette. The diskette can then be put in the
A-drive; a cold start will load the new Monitor.

LATEr SYSGENSs. Once the Monitor is on a disk and has been tested, that disk can be
used as the source disk in other SYSGEN operations, as described in Chapter 8. You've
changed the Monitor, and the latest version should be transferred to all the bootable
diskettes in the library. That’s a tedious job; defer it until you are quite sure that the new
BIOS works well and no further changes are needed.

271

Glossary

Address: The location of data in file storage or working storage. Usually an integer that
is the index of the storage unit (the byte or the record) in which the addressed data
begins.

ALGOL (ALGOrithmic Language): A programming language designed by an inter-
national committee in the early 1960's. ALGOL introduced many fundamental
concepts to the field. Widely available in Europe but little used in the United States,
where it came just too late to supplant FORTRAN.

Algorithm: A step-by-step plan for the solution of a problem. See the first section of
Volume I of Knuth's Art of Computer Programming for a detailed history and
definition of this useful word.

Allocation Block: The smallest unit of disk storage allocated to a file by the CP/M or
MP/M Monitor. Ranges in size from 1 to 16 KB.

ANSI (American National Standards Institute): The committee that oversees volun-
tary manufacturing standards in the United States. ANSI reviews and publishes
standards documents written by committees that are usually administered by
industry or professional organizations, and represents the United States in the
International Standards Organization (ISO). See EIA, CBEMA.

APL (A Programming Language): A programming language designed by Kenneth
Iverson in the 1960s . Intended for the concise expression of algorithms, especially
those relating to arrays of data, APL is an exceptionally elegant language, much
loved by those who know it. It is rarely used on small computers due to its special
character set and its need for a complex interpreter to achieve reasonable speed.

Application: Any use of a computer not devoted to managing the computer’s own
affairs. Applications are what computers are all about; they pay the bills.

Architecture: The design of a computer system, in particular its instruction set, but also
its interfaces and I/O devices.

273

274

Glossary

ASCII (American Standard Code for Information Interchange): A standard defin-
ing the binary values of printable and control characters for computer storage. The
ASCII representation of characters is used in all computers except those from IBM.

Assembler: A program that translates the text of a program written in assembly language
into a machine-language program.

Assembly Language: A notation used for writing machine-language programs in words
and numbers. Each machine design has its own unique assembly language. See
Assembler; Machine Language.

Backup: Making and preserving copies of files in order to minimize the cost of the loss
or destruction of data. As an adjective, the copies so made.

BASIC (Beginner’s All-Purpose Symbolic Instruction Code): A programming lan-
guage designed by John Kemeny at Dartmouth and intended for instructional use.
Widely available on small computers because of its supposed simplicity and
because of the ease with which a translator can be implemented.

BCD (Binary Coded Decimal): A representation of numbers in computer storage in
which each group of four bits represents one digit of a decimal number.

BDOS (Basic Disk Operating System): The hardware-independent part of the CP/M
Monitor. The BDOS is always resident in working storage. It executes service
requests for programs and manages the file system.

Binary: A number system to the base 2, much used within computer systems. See Bit;
Byte; Floating Point; Decimal; Hexadecimal.

BIOS (Basic I/O System): The part of the CP/M Monitor that controls the disk drives,
terminal, and printer for the rest of the system. The bulk of the BIOS is devoted to
handling disks, so the BIOS is usually supplied by the manufacturer of the disk
controller circuitry.

Bit: The fundamental unit of computer storage; short for “binary digit.” A single bit can
represent either the value zero or the value one (true or false, on or off).

Board: See Circuit Board

Bootstrap: (1) As a verb, to initialize an operating system. (2) As a noun, the program
that loads the resident part of an operating system.

bps (bits per second): A unit of measure for the rate of transmission of data. See
Transmission Rate.

Bug: An error, especially in a program. A bug is almost always the result of a mistake or
oversight on the part of a human being. See Debug; Glitch.

Bus: A set of electrical conductors, each with a defined use, so arranged that circuit
boards can be plugged into the bus in parallel.

Byte: A unit of computer storage; a group of eight bits. The contents of one byte can
represent an integer from 0 to 255, or an integer from -128 to +127, or one
character symbol. What the byte’s contents really stand for is determined by the
program that reads and processes it.

C: Not an acronym, “C” is a programming language designed for use in writing
operating systems. Used at Bell Laboratories to write the bulk of the UNIX
operating system, C has become available on small machines. C is an excellent
alternative to assembly language for systems programming.

Glossary

CBEMA (Computer and Business Equipment Manufacturer’s Association): The
trade committee that administers standards committee X3 for ANSI. Committee X3
and its subcommittees have written most of the programming language standards
now in effect,

CCP (Console Command Processor): The part of the CP/M Monitor that reads
commands from the terminal and initiates them. The comparable program in MP/M
is called the Command Line Interpreter (CLI).

Chip: See Integrated Circuit.

Circuit Board: A plastic or fiberglass board carrying metal traces that supports and
connects integrated circuits and other electronic components. It usually represents
one functional unit of a computer.

COBOL (COmmon Business-Oriented Language): A programming language in-
tended for the expression of problems in commercial data processing. Standardized
by the American National Standards Institute, COBOL is often required in federal
data processing contracts. COBOL compilers are available for CP/M.

Command: A request that may be made by a user of an operating system. In CP/M, most
commands are implemented as programs that reside in disk files.

Command language: The set of all commands a program will accept, and the rules for
their formation. In CP/M, commands have the form “verb operand(s).”

Compatibility: A characteristic of programs that are different but have the same
purpose, such that each can process data prepared for the other. For example, two
BASIC interpreters are compatible when each accepts and correctly processes
programs written for the other. Compatibility may be “upward,” that is, one way
only. For example, diskettes recorded under CP/M 1.4 can be read by CP/M 2, but
the reverse is not necessarily true; thus CP/M 2 is “upward compatible” with CP/M
1.4.

Compiler: A program that translates the text of a program written in a programming
language into a machine-language program. The machine-language program that is
the output of the process (the object program) can be stored in a file for later
execution,

Computer: A machine that follows a step-by-step program to organize data represented
by patterns of electric pulses.

Computer System: A computer and its associated I/O devices and programs; the whole
forming a single machine for organizing and presenting information to people.

Control Character: A binary value whose function is to control the form, or regulate
the transmission, of data. ASCII defines 32 control characters that can be sent from
a terminal keyboard by holding the control shift key while pressing another key.

Correctness: A characteristic of a program that delivers the expected output in the
expected format. Much theoretical work has been done on ways to create correct
programs from the start, as opposed to debugging them after they have been
written. Many good things have come of this work (see Structured Programming;
Top-down Design) but no magic solutions.

CPU (Central Processing Unit): That part of a computer that executes instructions. In
small machines the CPU is usually a single integrated circuit.

275

276

Glossary

Debug: To find, analyze, and correct the errors that will inevitably be present in all but
the most trivial of programs. The second most enjoyable, and usually the most
time-consuming, part of creating a computer program.

Decimal: A number system to the base 10, used often by human beings and occasionally
by computers. See Binary; BCD; Hexadecimal.

Delimiter: A marker that separates one unit of a program statement or command from
another. Typical delimiters are the space and tab characters, but any punctuation
may act as a delimiter, depending on the program that interprets the data.

Directory: A designated area on a disk or diskette in which the operating system keeps a
list of all files present on the disk and the location of their contents.

Disk: (1) A rotating disc coated with magnetic material, on which a computer can store
data, (2) Casually, the term for any use of disk or diskette, as in “I'll just save this on
disk.”

Disk Drive: The mechanical device that supports a disk or diskette, rotates it, and reads
or writes on it on command from a computer program.

Diskette: A disc of plastic, coated with magnetic material and cased in a jacket, on
which a computer can store data. First used by IBM to give their service personnel a
portable means of storing diagnostic programs. Widely used with small computers
because of the low cost of the disk drive that handles it, despite the fragility of the
medium.

Disk Parameter Block (DPB): The data structure, kept by the BIOS, that tells the
BDOS all it needs to know about a disk in order to do space management.
Disk Parameter Header (DPH): The data structure, kept by the BIOS, that tells the

BDOS where to find the DPB and other areas it needs.

Editor: A program whose purpose is to create or modify files under the immediate
control of a human being. A programmer, writer, or clerk is likely to spend more
time with an editor than with any other program.

EIA (Electronic Industries Association): A manufacturer’s association that adminis-
ters standards committee C83 for ANSI. That committee wrote standard RS-232-C
that specifies the serial data transmission interface used by most terminals and
printers.

Exchange Format: The format of 8-inch diskettes that can be read by any CP/M (or
MP/M) system—single-density recording with twenty-six, 128-byte sectors per
track, 77 tracks, initialized to OE5h bytes and IBM standard sector addresses.

Extent: A unit of disk storage used by the CP/M or MP/M Monitor. Either 16 KB (a
“logical extent”) or the amount of space controlled by one directory entry (a
physical extent, from 16 to 256 KB).

File: A named collection of data stored in a computer system. In CP/M and MP/M a file
consists of one or more directory entries and a series of 128-byte records containing
the file’s data. See File Storage; File System.

File Control Block (FCB): The data structure prepared by the programmer to hold
information about a file while the file is open.

File Storage: Any of the more-or-less permanent media for storing computer-readable
data, for instance, diskette and tape. Opposed to Working Storage (“RAM™).

Glossary

File System: The component of an operating system that allows the user to create and
manipulate files. The file system includes the functions of directory management
and disk space management, and sometimes the utility programs that transfer files
from device to device.

Floating Point: A representation of a number in which the significant digits of the
number are stored as one integer (the fraction), and the magnitude of the number is
stored as another integer (the exponent). The magnitude represents a power of the
number base (which may be 2, 10, or 16) and may be thought of as the position of
the decimal point in the fraction.

Floppy Disk: Casual term for diskette, used because the diskette is flexible, in contrast
to the hard metal disk that preceded it.

Format : To write all sectors of a disk or diskette at the desired density and sector size.
Minor details of formatting (density of track zero, fill byte value) can cause
incompatibilities between systems. See Exchange Format.

FORTRAN (FORmula TRANslator): One of the first true programming languages,
designed to express mathematical problems. A wonder for its time, now thought to
be difficult and error-prone by comparison with, for example, PL/I or Pascal. Very
common because of the huge number of existing programs written in it and the
relative ease of implementing a compiler for it.

Garbage: Programmer’s term for unpredictable or unwanted data, for example the data
that follows an end-of-file mark in a file.

Glitch: A transient, unrepeatable error in the operation of a machine, usually an error in
the hardware.

Hardware: The mechanical and electronic components of a computer system, as
opposed to the software, which is equally, or more, important.

Hexadecimal: (From hexa-, meaning 6, and decimal, thus “the six-ten system.”) A
number system with the base value 16 and digits 0 to 9 and A to F. A convenient
system for programmers, for a group of four binary bits can be represented as a
single hexadecimal digit. Binary values are unsayable (e.g., “11010100”), but their
hexadecimal form can be written, pronounced, and remembered (e.g., “D4").

Index: A table relating the key values of the records in a file to the addresses of those
records within the file. See Key.

Input: (1) A signal received by a computer from another device. (2) Data given to a
computer system, as “These numbers are the input for that program.” (3) (ungram-
matical) The act of sending data to a computer, as “I'll just input a control-c here.”

Instruction: (1) One of the elementary operations that a particular computer can do. (2)
The operation code that invokes that operation.

Instruction Set: The set of all instructions that a CPU can perform. The design of the
instruction set is crucial to the speed, ease of programming, and eventual success of
the machine.

Integer: A number with no fractional part; in computer storage, a group of bits
interpreted as a binary integer. CP/M languages usually support integers of 16 bits,
treated as numbers in the range -32768 to 32767. See Binary; BCD; Floating Point;
Hexadecimal.

277

278

Glossary

Interface: (1) The point at which two different things come into contact. (2) The design
of the connection between two electronic devices, such as a computer and an /O
device. (3) The conventions used for passing control and information between two
programs. (4) The rules and conventions for the use of a program by a person (the
“man-machine interface™).

Interpreter: A program that examines the text of a program written in a programming
language and carries out the machine-language instructions that the program
intends. Both the interpreter and the program being interpreted are present in
working storage during the process. See Compiler.

I/0: An abbreviation for “Input and Output.” Loosely, an abbreviation for all exchanges
of data between a computer and the outside world. See Input; Output; and I/O
Device.

1/0 Device: A machine attached to a computer which, by exchanging signals with it,
connects the computer to the outside world. For examples see Disk Drive; Printer;
Terminal.

Key, Key Value: A field within a data record that contains unique information that can
distinguish that record from all others in the same file. Used in a file index, where
each key value is associated with the address of the record having that key.

KB (Kilobyte): 1024 bytes, a common measure of computer storage. See Byte; MB
(Megabyte).

KSR (Keyboard Send-Receive): Term for a typewriter printer that has a keyboard.

Latency: The time required for a desired sector of a disk or diskette to rotate under the
read-write head. Usually given as one-half the total rotation time,

Linker: A program that converts a relocatable object program into an executable
program by supplying an origin and the addresses of its external subroutines.

Load: (1) To copy a file (especially a program) into working storage. (2) to convert a
.HEX file into a .COM file with the LOAD command.

Logical: Computer jargon for simulated, as opposed to physical, meaning tangible. For
example, CP/M may partition a physical (real), hard disk into smaller, logical
(simulated) drives.

Machine Language: Computer operation codes and addresses, especially as repre-
sented in storage. A machine-language program is a sequence of bytes that repre-
sent operation codes and addresses. See Assembly Language.

MB (Megabyte): 1,048,576 (1024 times 1024) bytes, a measure of computer storage.
See Byte; KB (Kilobyte).

Memory: Poor term for computer storage. One rare and expensive type of computer
storage (associative storage) bears a faint resemblance to the organization of human
memory, but in general the use of the term encourages the misleading idea that
computers can “think.”

Memory Bank: A term from the science fiction of the 1950’s that has no meaning in
modern terminology; often used by journalists unaware of the distinction between
working storage and file storage, or of the many kinds of the latter.

Monitor: General term for the part of an operating system that resides permanently in
working storage, providing services to other programs. See BDOS; BIOS; CCP.

Glossary

Nybble: A cutesy term for a group of four bits — one-half a byte, or a hex digit.

Object Program: The representation of a program in machine language, as delivered by
a compiler. May include relocation information.

Operating System: A collection of programs that apply the computer to the manage-
ment of the computer and its work.

Operation Code: A number that, when received by a CPU, causes it to do a certain
instruction.

Output: (1) A signal sent by a computer to another device. (2) Data received from a
computer system, as in “This output looks peculiar.” (3) (ungrammatical) The
computer’s act of sending data, as “It’s outputting good stuff now."

Parameter: In software, an element of a command or statement whose value is set from
outside the program at the time of execution, rather than being set at the time the
program is written (a constant) or being developed from computation (a variable).

Pascal: A programming language designed by Nicolas Wirth for use in the teaching of
programming and the design of algorithms. Currently very popular and widely
available for small computers. An excellent alternative to BASIC.

Physical: Computer jargon for tangible or real. See Logical.

PL/I [Programming Language/I (Roman one)]: A programming language first pro-
moted by IBM as having the best of both COBOL and FORTRAN (i.e., as being
good for both commercial and mathematical problems). Now standardized by
ANSI and available for small computers. An alternative to Pascal, especially where
compatibility with a large computer system is needed.

Precision: The number of digits that can be stored, given a particular representation of
numbers. Equivalent to “accuracy.” An attempt to store a number with more digits
than the precision the representation allows results in a loss of information. A
floating-point number drops the least significant digits in that case; an integer
representation will lose the most significant digits, resulting in a meaningless
value.

Printer: A device that prints on paper under the direction of a computer.

Program: A step-by-step plan meant for computer execution. See Programming Lan-
guage; Algorithm.

Programming Language: An artificial language designed to make it easy to express
problems for computer solution. See Assembler; ALGOL; APL; BASIC; COBOL;
FORTRAN; Pascal; PL/I.

Processor: The CPU with its interface and timing circuits. Usually implemented as a
collection of integrated circuits on a single-circuit board.

PROM (Programmable, Read-Only Memory): Like ROM, but its contents can be
changed (although usually they are not).

Protocol: An agreed upon set of rules for communication, especially between two
machines.

RAM (Random Access Memory): Engineer’s term for fast-access computer storage
(See Working Storage); not used in this book because (a) the readers are not thought
to be engineers and (b) the term is imprecise: disk storage is also capable of random
access.

279

280

Glossary

Record: One unit of data in a file. In CP/M files, the term has two meanings. A data
record is usually a line of characters terminated by a return, linefeed character pair.
A record as the CP/M Monitor knows it is a unit of 128 bytes.

RO (Receive Only): A term for a typewriter printer that lacks a keyboard.

R/O (Read Only): The state of a storage medium that is protected against modification.

ROM (Read-Only Memory): Fast-access storage whose contents are fixed at the
factory and cannot be changed by the computer. Used in some computers for the
part of the operating system that is always resident in working storage, to eliminate
the need of loading it. Also used to contain a bootstrap program that loads the
operating system and then disables itself.

RS-232: The standard for interconnecting terminals and other serial devices with a
computer. See EIA.

R/W (Read and Write): The state of a storage medium which the computer can modify.

S-100 Bus: A bus design commonly used in small computers. Originally designed
around the Intel 8080 CPU chip, now used with several different CPUs. Standar-
dized by the IEEE (IEEE-696). See Bus.

Sector: See Track.

Seek: To move the head of a disk drive to the required track.

Seek Time: The time it takes to perform a seek. Given as either “expected” seek time
(one-half the time to seek the full width of the disk) or as “track-to-track™ seek time.

Service Request: Act of a program in calling upon a-Monitor for some service. The
service provided by the Monitor.

Skew: An arrangement of data on a diskette such that sectors whose contents would
logically be adjacent are in fact separated along the track. The sectors are inter-
leaved so that sector n is separated from sector n+1 by some number of other
sectors (the number is the skew factor).

Software: Programs, or a program; usually opposed to hardware. The set of programs
used with a particular computer system.

Source Program: The representation of a program as a sequence of characters readable
by a human being. The form of input to an interpreter or compiler.

Spooling: (from SPOOL, Simultaneous Peripheral Operation On-Line.) An operating
system function in which data meant for the printer are collected on disk to be
printed later, during the execution of the next program. In small systems the term
has been applied incorrectly to the action of a utility such as Digital Research’s
DESPOOL, which prints disk files concurrently with the execution of other
programs. CP/M and MP/M do not have a true spooling function, for they do not
collect program output automatically; the user must take special action to direct the
output to a named disk file.

Standard: An authoritative, formal definition of an interface or a programming lan-
guage. See S-100 Bus; RS-232; ANSI; ASCII.

Structured Programming: A collection of techniques for programming that arose from
theoretical work in program correctness, most of which can be summarized in the
words “discipline” and “forethought.”

Terminal: Combination of keyboard and display tube (video terminal) or keyboard and

Glossary

print unit (typewriter terminal); the point at which a human interacts with a
computer.

Top-down Design: A technique of structured programming in which the program
design is stated very simply at the first level, then that statement is expanded into
subproblems each of which is stated plainly, then each substatement is in its turn
expanded until the statements are at the level of detail supported by the program-
ming language to be used.

Track: An imaginary circle traced over the surface of a disk by its read-write head, along
which data is stored. All diskette drives, and some disk drives, divide the track into
arc-shaped sectors of equal length, and read or write only complete sectors on any
operation.

Transmission Rate: The rate at which bits are sent over a communications line.
Measured in bits per second (bps). The standard rates are 110 bps, 300 bps, and
successive doubles of 300 through 19,200 bps.

Utility: A program whose purpose is to copy data from one place to another with little or
no processing or reformatting.

Variable: A named location in working storage, used to hold values during the
execution of a program.

Word: The unit of storage that is natural to a particular machine s architecture. For most
small computers the byte (8 bits) is also the word. Almost always a number of bits
that is a power of 2 such as 8, 16, or 32, although some machines have used words
that were multiples of 6 or 12 bits.

Working Storage: Fast-access storage from which the processor reads its program and
in which the programmer saves variables. See RAM; ROM; PROM.

281

Index

$$3.SUB file, 127, 188
8% filetype, 208

ASM filetype, 174

BAK filetype, 100, 208
.COM filetype, 66, 69, 163, 175, 176
HEX filetype, 165, 174, 175
UNT filetype, 165

.PRN filetype, 174

.REL filetype, 165, 175, 176
.SUB filetype, 127

SYM filetype, 174

abstraction, 178
access, I8
address, 145
algorithm, 9

allocation block, 150, 204, 209, 230, 231

allocation vector, 236, 238
alphabetizing, 142
ambiguous fileref, 67, 84, 187, 205
ANSI, 139
application, 11
archive program, 222
ASCII, 139
alphabetic, 141
CAN, 143
circumflex, 141
collating sequence, 142
control characters, 142
CR, 142, 159
device controls, 142
EM, 143
ESC, 143
format effectors, 142
LF, 142, 159
punctuation, 141
SUB, 143, 159, 206
up-arrow, 141
ASCII file, 142, 159, 206

assembler, 10, 173
absolute, 174
directive, 174
macro, 177
relocating, 175

assembler directive, 177
ELSE, 177
ENDM, 179, 182
IF, 177, 180
IRP, 178
IRPC, 178
MACLIB, 181
MACRO, 179, 182
REPT, 177

assembly language, 10, 165, 173

assignment chart, 89

backspace key, 64
backup, 32, 54, 123, 126
in MP/M, 127
BAT: device, 88
baud rate, 23
BCD, 138
BDOS, 41, 148, 183, 185, 249, 269
console input, 131
directory search, 205
file services, 204
and ZB0 registers, 195
BDOS error, 70, 75, 76
benchmark, 167
binary file, 160
binary integer, 137
binary system, 136
binary-coded decimal (BCD), 138
BIOS, 41, 148, 183, 186, 244
cold start, 246
entry table, 244
READ, 252
sector buffering, 254, 256

283

284

Index

SECTRAN, 249, 251
SELDSK, 248
serial 'O, 258
SETDMA, 252
SETSEC, 252
SETTRK, 250
skew table, 250
WRITE, 256
WRITE 0, 257
WRITE 1, 257
WRITE 2, 257
write buffering, 254-256
bit, 135
numbers in a byte, 136
boot, 60
bootable diskette, 60, 119
bootstrap, 60, 61, 119, 246
bootstrap loader, 61, 119, 268
bootstrap tracks, 150, 265
branch, 6
buffer, 8
bus, 19
byte 18, 135, 145

call, 8

CCP, 41, 43, 61, 185, 186, 205, 248, 269

comments, 62
prompt, 60, 62
and SUBMIT, 128

central processing unit (CPU), 16, 18

changing diskettes, 75
circuit board, 19
circuit card, 19
CISUB.LIB, 197
close (a file), 156
cold start, 61, 70, 246
collating sequence, 142
command, 43, 61

comment, 62

DDT, 189

DIR, 67

drivecode, 70

ERA, 73

LOAD, 175

REN, 72

SAVE, 190

STAT, 71, 77

SUBMIT, 127

TYPE, 78

USER, 125

XSUB, 130
command language, 43
command operand, 43, 186
command process, 43, 61, 66, 69
command tail, 186
command verb, 43
compiler, 10, 45, 163
computer, 4
computer crime, 6, 56
computer stores, 50

CON: device, 87, 196, 199, 258
conditional assembly, 177

Console Command Processor (CCP), 43

console input, 196

console output, 199
consultants, 50

control characters, 59, 142
control key, 59

control-c, 61, 75, 196, 200
control-p, 79, 80, 91, 196, 199
control-s, 78, 80, 196, 199
control-u, 64

control-x, 63

control-z, 92, 206

copying licensed software, 120, 121
COSUBL.LIB, 200

CP/M 1.4, 151, 157

CP/M variants, 183

CP/M-86, 18, 194, 244
CP/NET, 33, 37, 194, 225
CPMEQU.LIB, 182

CPU, 16

CRT: device. 88

data encryption, 56
data map, 204
data security, 55, 124
database, 47
DDT, 189

and restart 7, 185

in system generation, 269
debug, 10, 189
debugging aids, 189
default buffer, 186, 205
default drive, 202, 247
default drivecode, 70, 185
default FCB, 186, 205
delimiter, 43
DESPOOL, 260
device independence, 43
DIR command, 62, 67, 68
DIR file attribute, 76
direct access, 157, 204, 212
direct read, 213
direct write, 214
directive, 177

directory, 27, 150, 151, 218, 236, 257

attributes, 222

check vector, 236, 239

contents, 220

data map, 224, 231

extent number, 223

free attributes, 223

record count, 224

reserved attributes, 223

search, 205

size, 150

user code, 221
directory check vector, 239
disk drive activation, 238

disk organization, 148

Disk Parameter Block (DPB), 232
Disk Parameter Header (DPH), 249, 250

disk protection, 74, 75

disk space management,

diskette, 24
bootable, 60, 119
care of, 53, 117

compatibility, 29, 30,

density of, 28
diameters, 28
exchange, 29, 30

229

251, 266

exchange format, 29, 30

format, 241, 266
formatting, 119
hard-sectored, 28
history, 29

hole reinforcement, 118

IBM standard, 30, 241

Jacket, 24
labelling, 118
preparation, 118
sector size, 28
sides, 28
soft-sectored, 28
storage, 117
types of use, 122

write-protect notch, 118

diskette drive, 25
head cleaning, 118

distribution diskette, 29, 121

DMA address, 205
DPB, 232, 249
ALV, 236
BLM, 233
BSH, 233
CKS, 236
DRM, 236
DSM, 235
EXM, 235
OFF, 237
SPT, 232
DPSUB.LIB, 216
drive selection, 26
drivecode, 65, 68
default, 65, 202
in FCB, 202
invalid, 69

with command verb, 69

drivecode command, 70

ED, 44, 100

current character, 101

current line, 101
error messages, 105
example of use, 102
line numbers, 112

macro commands, 115

subcommand A, 106

subcommand B, 109
subcommand C, 110
subcommand D, 113
subcommand E, 103
subcommand F, 114
subcommand H, 107
subcommand |, 111

subcommand K, 113

subcommand L, 109,

subcommand M. 115
subcommand N, 115

110

subcommand mum:, 110

subcommand O, 107
subcommand P, 108
subcommand Q, 103
subcommand S, 113

subcommand syntax, 105

subcommand T, 107,

subcommand U, 105

subcommand V, 104,
subcommand W, 107
uppercase commands, 111, 114

edit session, 100, 102
editor, 44
concepts, 100
full-screen, 45, 101
line, 102

113

106

end of file, 143, 159, 206

end of line, 159

8080 CPU, 18

8085 CPU, 18

8086 CPU, 18

enter key, 59

entry point, 176, 177
ERA command, 73, 98

error message handling, 188

escape sequence, 143
estimating file size, 32

evaluating software, 51, 166
exchange format, 29, 30

execute, 8
explicit fileref, 67

Index

extent, 152, 209, 212, 213, 220, 231, 239

logical, 152, 153
physical. 152

extent number, 203, 205

external reference, 176

FCB, 154, 202, 223
current record, 204

data map, 204, 224, 23]

default, 186
direct address, 204
drivecode, 202

extent number, 203, 223

filename, 203
filetype, 203

record count, 203, 224
S1 byte, 203
S2 byte, 203

285

286

Index

fee software, 120, 121
file, 8
ASCII, 159
binary, 160
line, 159
with holes, 158
file attribute, 76, 221
archive, 222
DIR, 76, 222
R/O, 76, 85, 222
RW, 76, 222
setting, 225
SYS, 76, 85, 222
file attributes, 71
file buffer, 205
file close, 209
File Control Block (FCB), 154, 202
file creation, 208
file deletion, 208
file directory, 150
file input, 204
direct read, 213
file output, 207
direct write, 212, 214
file position, 214
file rename, 208
file space allocation, 152, 209, 213
file system, 8, 27, 42, 65, 218
filename, 66
fileref, 65
ambiguous, 67, 84, 187, 205, 226
asterisk in, 67, 187
as command operand, 186
explicit, 67, 225
in FCB, 203
question mark in, 68, 187
filetype. 66
conventional, 66
in FCB, 203
floating point, 138
format (a diskette), 119
full-screen editor, 45, 101

handshaking. 80
hard disk, 31, 124
backup, 126
head crash. 31
in MP/M, 127
organizing, 124
hardware, 7
hexadecimal, 136
HEXSUB.LIB, 216
high-order bit, 137

/0 assignment, 87

IBM standard diskette format, 30
IEEE-696 standard, 20

index, 214

input, 5

input-output (1/0), 5

instruction, 5
instruction set, 6
insurance, 54
integer, 137
signed, 137
unsigned, 137
interface circuits, 18
interleave, 250
intermediate code, 165
interpreter, 9, 45, 162, 165
IOBYTE, 184, 247, 261
1SO. 139

kevboard use, 58
kilobyte, 18

language case studies, 167
language compatibility, 166
latency, 31, 250

least significant bit, 136
licensed software, 120

copying, 121
line, 101, 159
line editor, 102
linker, 176

linking, 175, 176, 177
load (a program), 8
LOAD command, 175
logging in a disk, 238
logical device, 86, 184
in MP/M, 92
names, 87
with PIP, 92
logical drive, 124, 237
logical end of file, 206
logical extent, 220
loop, 6
low storage, 183, 247
low-order bit, 137
lowercase, 64
LPT: device, 88
LST: device, 87, 258
in MP/M, 92

MAC, 174, 178, 179, 181
machine language, 6. 10, 166
macro, 178, 179
calling, 179
parameters, 180
macro commands ED, 115
macro library, 181
matched translators, 164
matrix printer, 35
meaning of data, 135
memory-mapped terminals, 22
Monitor, 40, 41, 119, 18
most significant bit, 137
MOVCPM command, 267, 268
MP/M, 92, 126, 157, 244, 260
user codes, 126

number base, 136
number systems, 135
numeric precision, 137

object program, 10, 174
open a file, 154, 156
operand, 43, 186
operating system, 7
operation code, 6
origin, 174

output, 5

overflow, 138

page, 191,
parameter, 129
parity, 141
partial compiler, 164, 165
patch, 190
example, 191
performance, 10, 121, 163, 164, 167
physical device, 87, 184
names, 88
physical end of file, 206
physical extent, 220, 231
PIP, 44, 72, 77, 82
aborting copy, 84
CON: input, 92
concatenating files, 83
EOF: source, 97
for groups of files, 84
S— logical devices, 92
LST: output, 93
NUL: source, 97
option B, 97
option D, 94
option E, 97
option F, 94
option G, 86, 125
option H, 97, 174
option |, 97, 174
option L, 94
option N, 95
option N2, 95
option O, 86, 143
option P, 94
option Q, 96
option R, 85
option 3, 96
option T, 95
option U, 94
option V, 85
option W, 85
option Z, 97
PRN: output, 95
and user codes, 125
user-written exits, 98
portability, 166
precision, 137
~— printer, 33, 53
ball, 34

Index

band, 37

daisy, 34

matrix, 35

noise, 53

thimble, 34

train, 37

typewriter, 33
printer handshake, 37
processor, 18, 53
program, 6
program entry, 187
program error handling, 188
program exit, 187
program origin, 174
program stack, 187, 188
programmer, 9
programming, 9
programming conventions, 183
programming language, 9, 162’
project diskettes, 123
PTP: device, 88
PTR: device, 88
PUN: device, 87, 260

in MP/M, 92
purchasing a computer, 49
purchasing software, 50

R/O disk, 74, 75
R/O file attribute, 76
R/W file attribute, 76
RDR: device, 87, 260
in MP/M, 92
read-write head, 25
relocatable program,
relocation, 175
REN command, 72
report generator, 47
reserved tracks, 150
reset, 60, 61, 91
reset control, 60
restart (instruction), 185
restart locations, 185
restart 7, 185
return key, 59
RMAC, 175
RS-232, 22, 37
RS-449, 22
run, 8

65

$-100 bus, 19

SAVE command, 190, 269
sector, 148

sector size, 28

seek, 26

select error, 70
SEQIO.LIB, 212
sequential read, 206

serial number, 268
SERVICE macro, 195
service request, 42, 131, 185

287

288

Index

console input, 196

conventions, 194

file input, 204

file output, 207

file search, 224

numbering, 194
service request 1, 196
service request 2, 199
service request 9, 200
service request 10, 196, 197
service request 11, 197
service request 14, 202
service request 15, 204
service request 16, 209
service request 17, 225
service request 18, 225
service request 19, 208
service request 20, 206
service request 21, 209
service request 22, 208
service request 23, 208
service request 25, 202
service request 26, 205
service request 30, 223
service request 33, 213
service request 34, 212
service request 36, 214
service request 40, 214
service request 50, 244
service request jump, 185
SID, 185
sign bit, 137
sign-on message, 60
skew, 250
skew table, 250
software, 7
software evaluation. 51, 166
software license, 121
sort program, 47
sorting, 142
source program, 164

space allocation, 152, 156, 158, 209, 213, 220,

239
stack pointer, 187, 188
standard record, 148, 154
standard tab stops, 95
start bit, 23
STAT, 76
attributes, 222
device assignment, 90
device information, 89
disk information, 149
disk organization, 151
disk protection, 74
disk space, 71
disk status, 72
file attributes, 76
file information, 71, 153, 158, 213
patching, 191

stop bit, 23
storage size, 185, 188
string termination, 200
SUBMIT, 127
and '$’, 130
control characters, 130
example, 128
operation, 127
parameter, 129
patching, 192
zero-length lines, 132
substitution, 129, 179, 180
SYS file attribute, 76
SYSGEN, 120, 271
example, 120
system generation, 265

tab stops, 95

task definition, 49

terminal, 20
image quality, 20, 53
keyboard feel, 20
location, 52

track, 25, 148

Transient Program Area (TPA), 183, 187

translator, 9, 162
transmission rate, 23
TTY: device, 88
TYPE command, 78
typing errors, 63

UC1: device, 88

UL1: device, 88

unknown commands, 63

UP1: device, 88

UP2: device, 88

uppercase, 64

UR1: device, 88

UR2: device, 88

user code, 125, 185, 221, 247
in MP/M, 126

USER command, 125

utilities, 40

verb, 43, 61
with drivecode, 69

warm start, 61, 70, 75, 247
warm start jump, 183

word processor, 45

work diskettes, 123
working storage, 8, 18, 145
worksheet program, 46
write-protect notch, 24, 75

XSUB command, 130

Z80 CPU, 18
Z80 registers, 195

1

Part Two

A Reference
for Users
and

Programmers

Reference

Form and Use of Filerefs

Files are designated by three-part names. They are:

the drivecode, a single letter followed by a colon, that designates a disk drive, for
example A: or E:

the filename, one to eight characters long—if the filename contains an asterisk or a
question mark, it is ambiguous, otherwise it is explicir;

the filetype, zero to three characters long—like the filename, the filetype may be
ambiguous or explicit.

The valid drive letters are A through P, naming the 16 possible drives that a CP/M system

can support.

Neither filename nor filetype is allowed to contain embedded spaces or any of these
characters:

=[] < >
Most commands take filerefs as operands. A fileref is
{drivecode}filename{. filetype}

that s, a filename, possibly preceded by a drivecode and possibly followed by a filetype.

Some commands accept only the filename, providing an assumed filetype of their own.

When the drivecode is omitted, the system will supply the drivecode of the default drive
(the one named in the system’s command prompt).

Some commands accept ambiguous filerefs, but most require explicit ones. Each
command’s requirements are spelled out in its description in this reference.

293

294

Effects and Use of Ambiguous Filerefs

Fileref Will match

S All files

q-.+ Any file with a name commencing with a Q, from Q alone
through QUIETLY.BAS to QZZZ2ZZ2Z.22Z

was.com Any file of type .COM commencing WA, such as
WASH .COM, WANT.COM. or WAVERLEY.COM

wilt.p+ Any file named WILT with a type beginning with a P, such as
WILT.PLI, WILT.PRN, WILT.PRL

Q, All files—characters after an asterisk are ignored, so this is
equivalent to «.*

wan? Files with a filetype of three spaces and names of four letters
beginning with WAN—WANT, WAND

w?n?.» Any file with the first letter W, third letter N, a total of four
letters, any filetype. WANT, WINS.SUB, WONT.GO, but not
WINCE.BAS—five-letter names won’t match

2777777y . Eight-letter names ending in Y, any filetype—
SUDDENLY .BOO, WAVERLEY.COM

?7777772.77? Filenames not exceeding seven letters, types not exceeding two

..........

letters

Conventional File Typesin CP/M and MP/M

~— Filetype ASCII Conventional Use
ASC yes ASCII source text of some BASIC programs
ASM yes Source text of an assembly language program
.BAK yes Original version of an edited file
.BAS no? Source text of some BASIC programs; may contain token-
ized (compressed numeric) keywords
.CMD no CP/M-86 machine language program (command)
.COB yes Source text of a COBOL program
.COM no CP/M-80 machine language program (command)
.DOC yes Program documentation, usually informal
.FOR yes Source text of a FORTRAN program
.HEX yes Machine language program in symbolic (hexadecimal char-
acters) form; output of ASM, MAC
ANT no Intermediate code produced by some compilers
JRL no Indexed relocatable library built by the LIB command
.LIB yes Collection of source code for inclusion with MACLIB:
_ collection of relocatable subroutines for linking
- LST yes File intended for printing
MSG ves Informal documentation or note
.PAS yes Source text of a Pascal program
PLI yes Source text of a PL/I program
.PRL no Machine language program in page-relocatable (MP/M)
.PRN yes File intended for printing
.REL no Machine language program in relocatable form
.RSP no Resident system procedure for MP/M (see .PRL)
.SPR no System procedure for MP/M (see .PRL)
.SRC yes Assembler language source text for some assemblers
.SUB yes File of commands intended as input to SUBMIT
SYM yes Symbol information written by MAC assembler
.SYS no System file for MP/M
.TEX yes File of text with formatting commands, input to the TEX text
formatter
TIXT yes Informal documentation or note
888 unk. Temporary file, used by PIP and most editors as the type of

the work file

295

296

Control Characters Recognized

by CP/M and MP/M

Control characters are recognized and acted on by the Monitor when it is reading a
command line, or reading a complete line at the request of a command program. Many
control characters are not recognized when a command requests its console input one
character at a time, and none when it bypasses the Monitor to read the console via the
BIOS. The program may then supply its own meanings for the control characters.

Character Use Effect When Recognized
Standard Keys on Most Terminals
backspace edit Deletes prior character, backspaces cursor.
delete edit Deletes prior character in storage, but types the deleted
character at the console.
linefeed edit Ends input line, returns cursor to margin.
return edit Ends input line, returns cursor to margin.
rubout edit (same as delete)
tab edit Moves cursor to next eighth position (9, 17, 25, etc.);
program receives an ASCII TAB.
Control-Shift Characters
control-b control Terminates and removes DESPOOL.
control-c control Terminates command, causes a warm start.
control-d control Detaches console from command (MP/M only).
control-e edit Moves cursor to new line without ending the input line.
control-f control Activates DESPOOL.
control-h edit (same as backspace)
control-i edit (same as tab)
control-j edit (same as linefeed)
control-1 control Under ED, stands for CR, LF in string search and
replacement subcommands
control-m edit (same as return)
control-p control Starts or stops copying console output to the printer. —

Character Use Effect When Recognized

control-q control Gets exclusive use of the printer (MP/M only).

control-r edit Retypes the input line as received so far.

control-s control Suspends console output; restart with any key.

control-u edit Deletes input so far, moves cursor to new line.

control-x edit Deletes input line so far, moves cursor to its starting
position.

control-z control Flags end of a string to ED or PIP.

297

Physical Device Names

Name Conventional Use
Devices that May Be Assigned to CON:

TTY: Typewriter terminal

CRT: Video display terminal

BAT: Input requests diverted to the RDR: logical device, output
to LST: logical device

uct: Another console (human-operated input and output) de-
vice

Devices that May Be Assigned to RDR:

TV Typewriter terminal
PTR: Paper-tape (or cassette-tape) input
UR1:, UR2: Other serial input devices

Devices that May Be Assigned to PUN:

TTY: Typewriter terminal
PTP: Paper-tape (or cassette-tape) output
UP1:, UP2: Other serial output devices

Devices that May Be Assigned to LST:

TIY: Typewriter terminal

CRT: Video display terminal

LPT: A printer

UL1: Another printer or serial output

298

110 LdT +14D ‘ALL
:zdn ‘1dn ‘dLd JALL
zan 14N ML "ALL
S10n LLvd SLYD FALL

01 STUALL=:NQO 1V.LS Sutusisse jo 193JJ2 ay) J| 'Saweu 95142p [earsAyd o1 1]
01 19J21 SMOY “2I3 JI JUIWNIOP PUE ‘WANSAS INOA ur se

‘199 13u103 Yoy saddn oy ur Jeuruway,, ayum 1ySiw nok *[BUILLLI) DY) 01 ()/] S[OSUOD J22IIp

21 SUWINJOD PUR ‘SAWBU 2I1AP [BIIF0]

Y syuawugisse O/ a[qissod 9 ay Jo yoa 193550 Y AUTUINA(]

ey Judwudissy yueg

ALST

Nid

Hadd

NOD

299

302

Topical Summary of CP/M Commands

Command Syntax Page

Function

Commands for File Information and Display

DIR {fileref} 313
STAT d:{ DSK: } 355
STAT fileref 359
TYPE fileref 371
PIP dev:=filerefoptions] 343
DUMP fileref 317

Display files on a drive
Display disk information
Display file information
Display file at console
Send file to serial device
Display file in hex

Commands for File Alteration

ED fileref {d:} 319
ERA fileref 325
REN newref=oldref 349
STAT fileref Satiribute 361
LOAD fileref 327
SAVE size fileref 351
PIP 339
PIP destination=sourceloptions) 341
PIP d:=fileref|options] 343

Start editing session

Erase files

Rename existing file

Alter file attribute

Convert .HEX to .COM file
Copy storage to .COM file
Start PIP session

Transfer single file
Transfer multiple files

Commands for Serial Devices

PIP dev:=fileref|options) 343
STAT DEV: 363
STAT VAL: 363
STAT logical=physical 363
LOCAL device 329
NETWORK device=number LE 1

Send file to serial device
Display device assignments
Display STAT operands
Make device assignments
End use of remote device
Ask use of remote device

Commands for Building Programs

DDT {fileref} 309
LOAD fileref 327
SAVE size fileref 351

Start debugging session
Convert .HEX to .COM file
Copy storage to .COM file

Command Syntax Page Function

Commands for System Information

STAT DEV: 363 Display device assignments
STAT USR: 365 Display user-code status
STAT VAL: 363 Display STAT operands
CPNETSTS 307 Display network devices

Commands for System Control

STAT d:=R/O 357 Make drive read-only
STAT logical=physical 363 Make device assignments
SUBMIT {d:}filename {parameters...} 367 Run command list in file
USER code 373 Set active user code
XSuB 375 Supply input from file
DSKRESET {«:} 315 Reset local, remote drives

Commands for System Generation

MOVCPM size flag 335 Build relocated Monitor
SYSGEN 369 Copy Monitor image to disk

CP/NET Commands

CPNETLDR 305 Set up CP/NET connection
CPNETSTS 307 Display network devices
DSKRESET {d:} 315 Reset local, remote drives
ENDLIST 323 Close remote print file
LOCAL device 329 End use of remote device
LOGIN {pass} { [master] } 331 Ask use of remote system
LOGOFF { [master] } 333 End use of remote system
NETWORK device=number 337 Ask use of remote device
RCVMAIL { [master] } 347 Receive network messages
SNDMAIL [master] (target) *message’ 353 Send message on network

303

304

The two main components of a CP/M node of a network are the Slave Network /O
Supervisor (SNIOS), a hardware-dependent program that controls the communication
link(s), and the Network Disk Operating System (NDOS), which extends the functions
of the CP/M Monitor. Each program is kept ‘as a file of type .SPR.

This command need be done only once after a cold start. The network programs
remain in storage over a warm start.

Following this command a LOGIN command must be done to open communica-
tions with a master network node.

CPNETLDR

The command loads and initializes the code needed to connect a CP/M system to a
CP/NET network.

The command searches the default disk for the files SNIOS.SPR and
NDOS.SPR; when it finds both it loads them at the top of the Transient Program area
and prepares the system to act as a CP/NET node.

The command displays a report showing the starting addresses and length of each of
the main components of CP/M.

CPNETLDR

(cp/net)

305

306

The CPNETLDR command must have been done before this command can be
done. If this system has not been logged in to some master system with the LOGIN
command, all devices will be local.

The slave processor ID is the value that a user at another node would use to send a
message to this system. You might include it in a message or when reporting a problem
to the operator of the master node.

The network status byte is normally 10H. If the first digit is zero, then no LOGIN
command has been done. If the second digit is not zero, then a communication error
recently took place. Note the value of the second digit, as it is reset to zero by the
command.

A drive shown as LOCAL is simply one that is not accessed via the network; it need
not exist. The command reports on all possible disk drives, whether or not they exist in
the local system. When a drive is located on some other node, the ID of that node is
shown; it might be used to send a message to the operator of that system as in

dskreset c:
sndmail (00) “done with your disk G:"

CPNETSTS

(cp/net)

CPNETSTS

The command reports the status of the system as a node in a CP/NET network. The
report resembles this:

CP/NET 1.0 Status

Slave Processor ID = 14H
Network Status Byte = 10H
Disk device status:
Drive A: = LOCAL
Drive B: = LOCAL
Drive C: = Drive G: on Network Master ID = 00H
Drive D: = LOCAL

Drive P: = LOCAL
Console Device = LOCAL
List Device = List #0 on Network Master ID = 00H

The status of each device that can be accessed via the network is shown. A LOCAL
device is one that is accessed normally as part of the local CP/M system’s configuration.
Devices accessed at a distance are identified with the system and device name that they
represent.

307

308

DDT is used to debug programs written in assembly language. It also finds use as a
special utility program for building program images, and in applying patches to fix
programs.

See the USER command for an example of using DDT to load the image of a
command; see Chapter 12 for an example of applying a vendor’s patch to a command.

An assembly-language program can be built from different modules, each assem-
bled at a different, known origin. For example, a main program might contain a reserved
space for a terminal driver subroutine. Different terminal drivers can be prepared, each
customized for a particular terminal type. The correct driver can then be incorporated in
the main program with DDT:

ddt main.com load image of main program
-iterm120.hex prepare to load driver for Soroq 1Q120
-r read terminal driver to its origin

-g0 warm start, leaving merged program

save 37 main120.com save customized command program

DDT { fileref }

The DDT command initializes a debugging session. The code of the debugger is
loaded and moved to the top of the Transient Program Area, replacing the CCP. The
address of the end of the Transient Program Area in low storage is changed to protect the
debugger.

If fileref is specified, that file is loaded into the Transient Program Area. The
reference must be explicit and have a filetype of either .HEX or .COM. A .COM file is
loaded at 0100h; a .HEX file is loaded at its assembled origin.

The debugger then prompts with a hyphen and waits for a subcommand. A table of

DDT subcommands follows this topic.
The command is ended by a warm start. One may be obtained either by typing
control-c or by entering the GO (go to zero, i.e., to the warm start jump) subcommand.

309

310

Summary of DDT Subcommands

Syntax

Description

Astart

Distart}{ .end}

Fstart,end,xx

Gistart}{,b1{,b2}}

Hfirst,second

Ifileref

L{start}{,end}

Mstart,end,to

R{bias}

Assemble into storage: DDT prompts with successive addresses
from srarr. Enter operation names, and register names or hex
values as operands. End the process with a null entry.

Display storage: DDT displays storage in hex and ASCII, 16
bytes per line. The display begins with start if given, or where
the prior D left off, or with the HL value of the last instruction
traced. It ends with end if given, or after 12 lines. Use any key to
end the display early.

Fill storage: DDT replicates xx in every byte from start through
end. Caution: DDT will happily fill right over itself and the
BDOS if told to do so.

Execute program: DDT transfers control to start if given, or to
the test program’s PC. If one or two break addresses are given,
DDT makes each an RST 7 instruction; control returns to DDT
if the program reaches one and the instructions are restored.

Hex arithmetic: DDT responds with two numbers, first+second
and first-second.

Initialize FCB: fileref is set in the default FCB at 5Ch. Any
drivecode is ignored. The FCB may be used by the test program;
more often it is used by the R subcommand. Use S to set up a
drive number.

List instructions: DDT displays storage as instructions in
assembler format, from start if given, or where the last L left
off, or from the PC address of the last traced instruction. The
display ends with end if given, or after 11 lines have been typed.
Use the delete key to stop the display.

Copy storage: DDT copies the block of storage from start
through end to the address to.

Read program: The file named in the default FCB at 5Ch is
loaded as a program. The filetype must be .COM (load address
is 0100h+ bias) or must have the .HEX format. In that case the
bias is added to the load address in each line, causing the file to
load away from its assembled origin. The highest load address
this session and the current PC value are displayed.

Syntax

Description

Sstart

T{count}

U{count}
X

Xregister

Modify storage: DDT prompts with the address start and that
byte’s contents in hex. Enter a new value, or CR alone, to leave
itunchanged. DDT prompts with the next address; enter period,
CR to end.

Trace program: An instruction is traced. The test program PC
provides its address; use X to set it. The register state and the
instruction are shown before the instruction is done; use X to see
the instruction’s effect. If count is given, DDT continues for that
many instructions; use the delete key to stop it early.

Trace without display: Instructions are traced as for T but no
state display is typed.

Display program state: The test program registers and the in-
struction addressed by its PC are shown.

Modify register: DDT prompts with the contents of the named
register or flag. Enter CR alone to leave them unchanged, or
enter a new value. The registers are A, B, D, H, S (for SP), and
P (for PC). Flags are C, Z, M, E, and .

311

312

The command DIR with no operand displays all files with the active user number.
Use ambiguous filerefs to see the names of sets of files, for example,

dir ~.com to see all command verbs
dir his???.x to see six-letter filenames beginning HIS

When DIR produces no output at all, displaying neither a filename nor a message, it
is because there is at least one file that matches, but all files that match have the SYS
attribute. Use STAT with the same operand to see their names.

When DIR responds NO FILE but you think there ought to be files, check the active
user code with STAT USR:. The files you expect might be under a different user code.

DIR should not be used to preview the effect of an ERA command, as was possible
in prior systems. DIR does not report files with the SYS attribute but ERA will erase
such files. Use STAT to preview ERA; it reveals both system files and those that are
read-only.

DIR { fileref }

The system searches a disk’s directory for files that match fileref, and displays the
names of those it finds. Only files created under the active user code are examined. Files
with the SYS attribute may be found, but their names are not displayed.

If fileref includes a drivecode, the system searches the directory of the disk in that
drive. If no drivecode is given, it searches the directory in the default drive.

When fileref is explicit, only one file can be found. If it is ambiguous, many files
may be found to match. Their names are displayed four per line. If fileref is omitted, the
command assumes an operand of +.+, meaning “all.”

If no matching files are found, the message NO FILE is displayed.

313

314

The command finds little use for local drives, which are reset by the warm start at
the end of the command anyway. It is useful for causing a reset of a drive that is located at
another node. Use CPNETSTS to find out the local drivecode for a remote drive. After
the operator at the other node has loaded a diskette for you, use the DSKRESET
command to cause the remote system to reset its drive so that you can write on it.

(This command is a standard part of an MP/M system, where it replaces the warm
start for purposes of resetting disk status. MP/M has no warm start.)

DSKRESET { drivecode ... }

The command resets one or more drives, that is, it causes CP/M to forget the check
information it uses to detect when a diskette is changed. The diskette in the drive may
then be changed without CP/M marking it read-only.

If no drivecode is given, all drives used by this node are reset. If a single drivecode
is given, only that drive is reset. Several drivecodes may be specified, separated by
commas; each drive is reset.

315

This command is of most use to programmers who want to see the exact contents of
a file, unedited by any of the normal display mechanisms.

The operand is usually an explicit fileref. However, it may be ambiguous, in which
case DUMP displays the first file under the active user code that matches the reference.
That will also be the first file named by DIR, given the same operand.

316

DUMP fileref

The file named by fileref is displayed at the console in hexadecimal format. Each
line of the display shows 16 bytes of data, prefixed by the relative address of the data in
the file.

317

318

See Chapter 7 for a discussion of ED and examples of its use.

The I, F, and S subcommands behave differently depending on the case in which
the command letter is typed. The subcommand i accepts input as typed, whereas the
subcommand | converts the typed input to uppercase.

ED can be used to inspect an input file that is marked read-only. If the session ends
with the Quit subcommand all will be well. If ended with End, ED will attempt to
rename the input file, causing BDOS Error on x: File Read-Only and a warm start. ED
cannot take its input from a read-only disk drive. The message BDOS Error on x: RO
appears at the start of the session.

ED can be automated with the XSUB program. The script of an entire edit session
can be put into a submit file and run without human intervention. In this way a set of
complicated but routine changes can be run with only a single command. One exception:
the bulk Input subcommand will not accept input via XSUB.

ED fileref { drivecode }

An edit session is begun on the named file (fileref must be explicit). A file of the
same filename, but with a filetype of .$$$. is created to be a work file. The program then
awaits an edit subcommand from the console. A table of ED subcommands follows this
topic.

If the named file does not exist, a NEW FILE is reported. If it does exist, ED
prepares to read it. Any existing filename BAK is erased at this time,

The presence of the optional drivecode changes the command’s operation. If a file
named fileref exists on that drive, ED terminates with the message FILE EXISTS,
ERASE IT. If there is no duplicate filename, the work file is created on that drive.

When the session is ended with an End subcommand, the edited data are written to
the work file, which is then given the name fileref. The original file is given a new
filetype of .BAK. If the command ends with a Quit subcommand, the work file is erased
and the original file is unchanged (although a .BAK file of the same name is gone,
regardless).

319

320

Summary of ED Subcommands

Key: s = a sign (blank or —); # = an unsigned or negative number;
p = an unsigned number; string = letters ending in control-z.
Syntax Description

n A number alone has the effect of nLT.

p Move to the pth line in the file.

ip Before a letter, means “'the range of lines from the current one to
the pth one, inclusive.”

pA Read p lines from the source file and append them to the file
copy in storage.

sB Move to the beginning line (B) or bottom (-B) of the file.

nC Move right/down # characters (positive), or left/up n characters
(negative) in the file.

nD Delete n characters beginning with the current one and moving
right (positive), or delete the n characters left of the current one
(negative).

E End the session: write all source text to the work file and rename
it: rename the source file to .BAK.

nFstring Find the nth occurrence of string. Positive n searches down,
negative searches up. Treats string as uppercase when com-
mand is F, as mixed case for f.

H Start over at the top of the source file, preserving all changes.
Do the actions of E, then begin again on the new source file.

| Start bulk input: all input to a control-z is added before the
current character. Input is forced to uppercase if command is I;
lowercase is accepted under i.

Istring Insert the string before the current character.

ndstringlstring 2string3

Search for stringl as for F; insert string2 as for |; delete follow-
ing characters up to string3. No deletion is done if siring3 can’t
be found. With empty string2, J performs delete from-to; with
empty stringl as well it is delete-to; with impossible string3 itis
insert-after.

Syntax

Description

nK

nL
pMeommands
pNstring

o

nP

Q

R{filename}
nSstringl string2
- nT

sU

sV

pW

pX

pL

Delete n lines starting with the current one and going down
(positive), or n lines before the current one (negative).

Move down (positive) or up (negative) n lines.
Repeat the sequence of commands, p times.

Search down for the pth occurrence of string, doing W and A
actions as needed to scan all lines of the source file.

Restart the session with the original file: delete the work file and
clear the storage buffer,

Page down (positive) or up (negative) n multiples of 23; display
23 lines as for T.

Quit the edit with no changes: delete the work file and end the
command. Note that any .BAK file is lost.

Open filename.LIB and insert its contents as for |. When file-
name is omitted, uses $$$$$$$S.LIB (see X).

Find string! as for F; replace it with string2. Treats both strings
as uppercase if command is S.

Type n lines starting with the current one (positive), or the n
lines above the current one (negative).

Force inserted letters to uppercase (U), or allow them to be
mixed-case (-U). See note on cases under F. I. S.

Use line numbers as a prompt (V), or use only an asterisk (-V),
or display free/total storage (OV).

Write the top p lines of the file copy in storage to the work file
(see A).

Copy p lines starting with the current one to the temporary file
$$$$$$$$.LIB (from whence R can read them). 0X clears the
temporary library.

Idle for (theoretically) p seconds. Actual delay depends on the
machine clock speed. Wake it up with any key.

321

322

When output written to the LST: logical device is travelling over the network to a
printer at a remote node, the ENDLIST command signals that node that the end of a
printed file has been reached. If the remote node has been saving the output on disk, it
will know it can close the file and schedule it for printing. Use the ENDLIST command
at the conclusion of a program so that its printed output will not run together with the
output of the next command.

When the printer is a local device, the command has no use, although it will usually
cause no harm. It is safe to include ENDLIST in a submit file that may be used with
either a local or a remote printer.

ENDLIST

(cp/net)

ENDLIST

The command writes a single end-of-file character (ASCII SUB control character,
or control-z) to the LST: device.

323

324

Remember the mnemonic “ERAsed files are ERAtrievable,” and use caution when
erasing more than one file. In fact, it is possible to write a program that can, in some
cases, recover an erased file. Such programs only work when no files are created on the
disk following the erasure.

Use ambiguous filerefs to erase sets of related files, for example,

era ~.bak 1o erase all edit backup files
era his??7?.» to erase six-letter filenames starting with “HIS”

Use STAT to anticipate the effects of an ERA command. STAT given the same
fileref displays all files ERA will attempt to erase, including those with the SYS attribute
and those that are R/O.

When ERA responds NO FILE, but you think there ought to be files, check the
active user code with STAT USR:. The files you expect might be under a different user
code.

ERA fileref

The system searches a disk’s directory for files that match fileref, and erases those it
finds. Only files created under the active user code are examined. Files with the SYS
attribute are found and can be erased.

If fileref includes a drivecode, the system searches the directory of the disk in that
drive. If no drivecode is given, it searches the directory in the default drive.

When fileref is explicit, only one file can be erased. If it is ambiguous, many files
may be erased. If the «.» reference is used, the command requests confirmation before
erasing all files.

If a matched file has the R/O attribute, the message

BDOS Error on x: file rlo

will be displayed and the system will await any console input, following which a warm
start will be done. Some matching files may be erased before the R/O file is encountered.

If fileref is omitted, or if no matching files are found, the message NO FILE is
displayed.

325

326

A .HEX file is the normal output of a (nonrelocating) assembler. It represents each
byte of a program with two ASCII characters, one for each hexadecimal digit. Each line
of the file is preceded by the address at which the line’s data are to be loaded, and
followed by a one-byte checksum.

The HEX format was devised as a way to represent a machine language program in
standard ASCII characters. Such a representation can be printed and transmitted via
media, such as paper tape, that require 7-bit ASCIL.

The usual sequence of operations is to create the .HEX file, load it, and try it out:

asm testprog
load testprog
testprog operands...

DDT’s R subcommand will load a .HEX file for testing or as a subcomponent of a
larger program:

asm partprog assemble customizing module
ddt fullprog.com load major program
-ipartprog.hex

-r overlay with customizing module
-go

save nn fullprog save customized program

See Chapter 15 for an example of this technique in a CP/M system generation.

LOAD fileref

The named file is read and inspected for correct HEX format. The program it
represents is formed in working storage at its correct origin. The program image is
written to disk under the same filename but with a.COM filetype. The command Teports:

FIRST ADDRESS xxxx starting address of the program
LAST ADDRESS xxxx ending address of the program
BYTES READ xxxx count of bytes in the program image
RECORDS WRITTEN xx 128-byte records in the .COM file

If fileref includes a drivecode, both input and output take place on that drive.
Otherwise both input and output take place on the default drive. If the filetype is omitted
from fileref, the command supplies a .HEX filetype.

The command will report a number of errors in file handling:

CANNOT OPEN SOURCE input file not found
NO MORE DIRECTORY SPACE output file can’t be created
CANNOT CLOSE FILE disk or directory is full

and in the format of the input file;

INVALID HEX DIGIT input character not in ‘0".,'F’
CHECK SUM ERROR each line of input is checked

Following these errors the command reports the load address and the address in the
record in which the error occurred.

327

328

The CPNETLDR command must have been done before this command can b
done. If no LOGIN command has been done, then all devices will be LOCAL already.

When CP/NET is active, the CON: and LST: devices, and any disk drive, may be
located on another system, with data passing to and from the local system over the
network. Devices are made remote with the NETWORK command. This command
reverses the effect of NETWORK for a device. Use CPNETSTS to find out which
devices are local and which are remote.

Here is an example of remote 1/O:

cpnetldr load the CP/NET support code

login connect to the (main or only) master
network c:=g: drivecode C: to mean master’s G-drive
pip a:=c:master.ful copy file from master’s disk to ours
local c: make drivecode C: local again

There need not be a real drive C: on the local system; any drivecodes A...P will do. Using
nonexistent drive letters for remote drives helps avoid confusion.

Notice that the command LOCAL CON: is meaningless if given at the local
console; if it can be given there, then CON: was local already. LOCAL CON: is useful
only when given from the remote console, after which no more commands will be
accepted there.

Before making a remote disk local, it’s a good idea to reset it with DSKRESET.

LOCAL CON:
LOCAL LST:
LOCAL drivecode

The command changes the indicated device from one that is accessed remotely over
the CP/NET network to one that is accessed locally as part of the system.

The first form is used to direct /O for the CON: logical device to the local console
instead of a console on a remote system.

The second form directs 1/0 for the LST: logical device to the local printer instead
of a printer on a remote system.

The third form is used to direct disk 1/O to a local disk drive instead of a disk drive
on a remote system.

329

The CPNETLDR command must have been run before LOGIN can be done. Once
LOGIN has been successful for a particular master system, it need not be repeated unless
a LOGOFF command is done.

The LOGIN attempt may fail for any of several reasons. It may be rejected by the
master system because the password is incorrect or because the master is overloaded.
The CP/NET software may not be active in the master system, or indeed the master
system might not be turned on.

More than one LOGIN may be done. The following sequence will copy a file from
master system 00 to a disk on master system 02:

cpnetldr initialize network software

login log in to master 00

login 02 log in to master 02

network d:=c: drivecode D: represents master 00 drive C:
network e:=Db: [02] drivecode E: represents master 02 drive B:
pip e:=d:remote fil copy file from one master to the other

330

LOGIN { password } { [idmaster] }

The command contacts a master system on the CP/NET network and requests the
right to use that master’s facilities.

If password—one to eight letters—is specified, it is sent with the request. Other-
wise the letters PASSWORD are used.

If idmaster is specified, that master is contacted. Otherwise master 00 is contacted.

It is not clear what the command reports if the LOGIN fails.

331

The CPNETLDR command must have been done before this command can be
done. A successful LOGIN to the same master should have been done, but no harm will
come if one has not.

The master system has some resources tied up for each system that has logged in to
it. Those resources can only be freed by LOGOFF. The master will not voluntarily free
them. It is good practice to use this command whenever a master’s services aren’t going —
to be needed.

332

LOGOFF

(cp/net)

LOGOFF { [idmaster] }

The command contacts a master system on the CP/NET network and informs it that
this system no longer needs its facilities.

333

334

This command is part of the process of generating a new CP/M 1| or CP/M 2 system,
either initially or when the size of working storage is being altered. It is the only means of
relocating the Monitor, a necessary step for most systems as the Monitor is distributed
with an assembled origin suitable for a system with 20K bytes of working storage. The
command is often modified by the system’s vendor, and may have a different name to
distinguish the customized version from that supplied by Digital Research.

It is a common mistake to omit the leave operand. The command then attempts to
execute the relocated Monitor. The BIOS contained in the relocated image is usually not
the correct one for this system, and the result is a hung system that can only be recovered
by a cold start. The command is normally given operands of two asterisks:

movepm =

This causes the Monitor image to be relocated for the size of the machine. At the end of
the command the image of the Monitor is in working storage, ready to be saved as a
.COM file. The customized BIOS for the system can then be patched into the .COM file
and the customized system placed on a disk with SYSGEN.

See the SYSGEN command for the rest of the generation process; see Chapter 15
for further discussion.

MOVCPM size leave

The image of the CCP and BDOS contained in the command is relocated for
execution in a machine with size kilobytes of storage. If any leave operand is present, the
command ends, leaving the Monitor image in storage. If leave is omitted, the Monitor
image is moved to its relocated origin and begins execution as if it had been loaded by a
cold start.

The size operand may be given as a decimal number of kilobytes, or as an asterisk,
or omitted. If it is omitted or given as an asterisk, the command uses the size of working
storage as it presently exists.

MOVCPM

335

336

The CPNETLDR command, and a LOGIN for the desired master system, must
have been done successfully before this command can be done.

When CP/NET is active, the CON: and LST: devices, and any disk drive, may be
located on another system, with data meant for those devices passing to and from the
local system over the network. This command makes a device remote. The LOCAL
command reverses its effect. Use CPNETSTS to find out which devices are local and
which are remote.

Here is an example of remote I/O:

cpnetidr load the CP/NET support code

login connect to the (main or only) master
network c:=g: drivecode C: to mean master’s G-drive
pip a:=c:master.ful copy file from master’s disk to ours
local c: make drivecode C: local again

There need not be a real drive G: on the local system; any drivecode letter A...P will
do. Using nonexistent drive letters for remote drives helps avoid confusion.

When the command NETWORK CON: is given, no further commands can be
entered at the local terminal; all console 1/0 will be directed through the network to the
master system. The command LOCAL CON: will end the connection and make the local
terminal usable again. It must be given from the remote console, after which no more
commands will be accepted there.

NETWORK

(cp/net)

NETWORK CON:=number { [idmaster] }

NETWORK LST:=number { [idmaster] }
NETWORK drivecode=drivecode { [idmaster] }

The command changes the indicated device from one that is accessed locally as part
of the system to one that is accessed remotely over the CP/NET network. In each case.
idmaster is the number of a master node to which this CP/M system is connected. If it is
omitted, the number 00 is used.

The first form is used to direct I/O for the CON: logical device to a console on the
remote system. Number is the MP/M console number of the remote console.

The second form directs I/O for the LST: logical device to a printer on the remote
system. Number is the MP/M console number of the remote printer device.

The third form is used to direct disk I/O to a disk drive on the remote system. The
first drivecode is the drivecode that will be used in commands in the local system. The
second drivecode is the actual drivecode of the disk in the master system.

337

PIP is used to copy data between disks and between serial devices. Itis convention-
al to speak of “moving” data with PIP. New users should keep in mind that data are not
moved but copied; the source of a transfer is never changed. Chapter 6 contains many
examples of the use of PIP.

Specify a single transfer as part of the command. When doing two or more, it is
faster to call PIP with no operands and specify the transfers after. This avoids the warm
start each time PIP ends.

Users of two-drive systems have a problem when copying between two diskettes
neither of which has a copy of PIP. The solution is to load PIP and then change the
source diskette:

A=pip load PIP from the A-drive

* PIP waits; load source diskette in A-drive
b:=aixyz+ read from A, write to B

* PIP waits; put system diskette back in A
(return) end PIP, warm start follows

CP/M notices when a diskette is changed and marks it read-only; therefore you
can’t change the destination diskette. The changed source diskette must be recorded at
the same density and sector size as the one removed.

See the USER command for copying files between user codes.

338

PIP { transfer }

If a transfer is specified, it is performed and the command ends.

If no transfer is given, the command prompts with an asterisk and awaits the entry
of a transfer specification. It performs that transfer and prompts again, until a null line is
entered.

If a character is typed at the console while the command is working on a transfer,
the transfer stops. PIP reports ABORTED. It then ends, or prompts for another transfer,
depending on how it was called.

A rransfer is given as:

destination=sourceloptions]...
where destination and source are the names of devices or files. There are two kinds of
transfer: those that create a single file from one or more sources, and those that copy

multiple files. The two kinds of transfer are described in the following topics, and
summary tables follow them.

339

Here are examples of single transfers:

clone.bas=original.bas|v]
tail.bas=original.bas[s12000°Z]

The file CLONE.BAS is a duplicate of ORIGINAL.BAS: TAIL.BAS is a copy of the
part of ORIGINAL.BAS that begins with the characters 12000. Single transfers may

also move between drives:

c:backup.dat=b:master.dat[v]
b:laminate=one.pli,two.pli,three.pli[v]

Single transfers are used to write files to the printer when pagination or sequence
numbering is wanted (console copy is easier for simple listings; see the TYPE com-

mand):

Ist:=cbios.prn[t8p]
prn:=equ.lib,mac.lib,hex.lib

The special device names NUL: and EOF: are designed for use with a paper-tape
punch:

pun:=nul:,prom1.hex,eof:,nul:,prom2.hex,eof:,nul:
In MP/M 2 ambiguous names may be sent to serial devices, as in:

prn:=b:=.bas[t8p50]

340

destination=source [options]...

The destination in a single transfer may be an explicit fileref, the name of a logical
device like LST:, the name of a physical device like CRT:, or one of two special PIP
device names, PRN: or OUT: (a table of all PIP device names follows the next topic).

The source(s) in a single transfer may be explicit filerefs, names of logical devices
like CON:, names of physical devices like CRT:, or PIP special device names like
EOF:. As many sources, separated by commas, may be given as will fit in a command
line of 128 characters.

Each source is read until end of file is reached and its data are written to the
destination.

PIP
(single

destination)

341

342

This form of transfer is commonly used to create backup copies of files. The names
of sets of related files should be designed for easy copying:

b:=a:po0????.dat numeric purchase orders, not “poorly.dat”
g:=b:gl=.cob source modules of general ledger system

The W option (override R/O file protection) is at its most dangerous when a group
of files is being copied. When copying a single file there is little chance that a wanted file
will be destroyed. When ambiguous filerefs are used it is much easier to pick up an

unexpected file by mistake.
In MP/M 2 both source and destination filerefs may be ambiguous, provided they

are ambiguous in the same way, as:

b:«.bak=a:+.asm[va]

In this case the destination files will have different names. The new A option is especially
useful for backing up a hard disk.

drivecode=fileref [options]

This form is used to transfer one or a number of files between drives. The source
fileref may be ambiguous. The source drive must be different from the destination drive,
Only one fileref may be given.

The file or files that match fileref are copied to the destination drive. The copies are
given the same names as their sources. When the fileref is ambiguous, PIP reports the
name of each file at the console. The name is typed as the copy begins, so if the transfer is
aborted, it is the last name that was not completely copied.

PIP

(multiple
files)

343

344

Summary of PIP Options

Key: n = a number; siring = any letters ended with control-z

A Copy only files with the Archive attribute false; make it true
afterward (MP/M 2 only).

B Buffer input until storage is full or an ASCII DC3 (formerly
XOFF, 13h) is seen, then write. Lessens chance of overrun.

Dn Truncate input lines after the nth character.

E Echo all data at the console as they are copied.

F Remove formfeeds (ASCII FF, OCh) from the input (P may be

used to insert others).

Gn Look for this file under user code n. (MP/M 2: may be given
with destination as well.)

H Check for correct .HEX format; prompt the user if an error is
found. Drop inessential bytes (e.g., NUL, DEL).

I Drop :00 records from the .HEX-format data (includes actions
of the H option).

L Translate uppercase letters into lowercase.

N1 Add sequence numbers of the form ** 99:” to each line.

N2 Add sequence numbers “00000099:,” TAB, to each line.

o} Not an ASCII file; don’t treat SUB (1Ah) as CP/M end of file
(assumed when the filetype is .COM).

Pn Insert a formfeed (ASCII FF, OCh) after every n lines. If n is
omitted, 60 is assumed (see the F option).

Qstring Stop copying when the characters string are written.

R Read the file even if it has the SYS (no directory display) file
attribute.

Sstring Skip input data until the characters string are seen.

Tn Replace tabs with spaces to simulate tab stops set at every nth
column. Assumes 8 if # omitted (CP/M standard tabs).

U Translate lowercase letters into uppercase.

\" Do a read-back check of the destination disk file.

w Replace a read-only destination file without asking the user’s

permission (bad practice).

Device Names Used in PIP Transfers

Key: d = valid as a destination; s = valid as a source

CON:
LST:

RDR:
PUN:

PRN:
NUL:
EOF:
INP:

QUT:

TTY:
CRT:
UCi:
LPT:
UL1:
PTR:

UR1/2:

PTP:

UpP1/2:

o

{=H

e a A A &

e o

Logical Devices

The currently assigned console device
The currently assigned printer device (see also PRN:)
The currently assigned reader device

The currently assigned punch device
Special Devices

Same as LST: with options [t8np] added

40 ASCII NUL characters (00h) to space a paper tape

An ASCII SUB character (1Ah) to mark CP/M end of file
Code patched into PIP, reached via CALL 103H

Code patched into PIP, reached via CALL 106H

Physical Devices (defined by BIOS code)

A hard-copy terminal device
Usually the main terminal device
A special terminal device
Usually the main printer device
A special printer device

An input device

An input device

An output device

An output device

345

346

The CPNETLDR command, and a successful LOGIN for the desired master
system, must have been done successfully before this command can be done.

In CP/NET terminology, “mail” is a one-line message sent by the user of one
system in the network to the user of another. Mail is sent with the SNDMAIL command
and received with this command. Mail may also come from the user of a master system,
or be broadcast to all nodes from a master system. Mail is held by the master closest to
this system until it is called for with this command. Then it is sent and also deleted from
the master system'’s queue.

Here is what one side of a conversation by mail might look like:

sndmail (04) “Elmer, ready for lunch?”
rcvmail
04: YES MEET YOU IN THE LUNCHROOM - E.

RCVMAIL

(cp/net)

RCVMAIL { [idmaster] }

The command queries a master system in the CP/NET network for any mail
(messages from other CP/NET nodes) that it is holding for this system. If there are
messages, they are received and displayed at the terminal.

If idmaster is specified, that master will be queried; if it is not, then master 00 will
be queried.

The system will be suspended until a message is received.

347

REN can only be used with explicit filerefs. In CP/M 1, CP/M 2, and MP/M 1 it is
not possible to rename a set of related files, as:

ren oldprog.”=prog.” only in MP/M 2

REN is handy when all but one or two of a set of files are to be erased or copied.
Rename the exceptions, then operate on the remaining set with a single command:

ren allbut=except.com
pip b:=a:*.com copy all but EXCEPT.COM
ren except.com=allbut

A read-only file cannot be renamed, nor can a file on a read-only drive. A file with
the SYS attribute, if renamed, will then appear in directory displays.

348

REN newref=oldref

The command requires a single operand composed of two explicit filerefs linked by
an equal sign. The file named oldref is renamed newref.

Drivecodes must be omitted from both filerefs, or both drivecodes must be the
same. If the drivecodes differ, the command reports oldref? and ends.

If a file named newref already exists, the command reports FILE EXISTS. If the

file oldref cannot be found, the command reports NO FILE. In either case no action takes
place.

349

350

The purpose of SAVE is to preserve a copy of a program image that has been
prepared in working storage, usually so that it can be executed later as a command. The
normal sequence of events is to use DDT to create the program image and SAVE to
preserve it:

ddt badprog.com load program with a bug
alter it with DDT subcommands
-g0 return to the CCP

save 28 goodprog.com copy the altered program to disk

DDT reports the address of the byte following the end of the program as loaded. The
number of pages to save is the decimal value of the most significant byte of this address,
unless the address ends in 00h when one less page is needed:

end address is OE3A save OEh, or 14 pages
end address is 2200 save 21h, or 33 pages

A size of zero is permitted; SAVE 0 NULL.COM creates a command file of length
zero. Such a command has a use; the NULL command that results is equivalent to

restarting the last-executed program at address 0100h. Some programs can be restarted
in this way and some cannot.

SAVE size fileref

The present contents of working storage, beginning at address 0100h, are copied to
disk under the name fileref. Size specifies a decimal number of pages (256-byte units) to
be copied.

Fileref must be explicit. If a file fileref already exists, it is replaced. If there is not
enough disk space for the file, NO SPACE is reported.

351

352

The CPNETLDR command, and a successful LOGIN for the desired master, must
have been done before this command.

In CP/NET terminology, “mail” is a one-line message sent by the user of one
system in the network to the user of another. Mail sent to a slave system travels through
the network to the master system closest to its destination. There it is held until the user
of the slave system enters the RCVMAIL command.

Here is what one side of a conversation by mail might look like:

sndmail (04) “Elmer, ready for lunch?”
revmail
04: YES MEET YOU IN THE LUNCHROOM - E.
Mail can be sent to a master system by giving the master system’s id for idrecvr:
sndmail [01] (01) “is my listing finished? Ellen.”

The message will be held at the destined master system until a user of that system enters
the MRCVMAIL command.

SNDMAIL

(cp/net)

SNDMAIL { [idmaster] } (idrecvr) “message”

The command passes a message to a master system in the CP/NET network for
delivery to another CP/NET node.

If idmaster is specified, the message will be sent via that master; if it is not, then
master 00 will be used.

353

It is a common typing error to omit the colon following drivecode. In that case
STAT assumes you want information on a file. Usually there is no file of that name, and
STAT reports NO FILE.

The first form of the command tells the free space on a drive. Use it to see if there is
room for some file, and to check the results of erasing files to make room:

stat bigfile check size of BIGFILE

stat b: see if there's room on the B-drive
era b:=.prn clear some space on the B-drive
stat b: check space again

pip b:=bigfile copy the file

The report produced by the second form of the command is based on the CP/M Disk
Parameter Block. It describes the information used to allocate space to files. Chapter 14
describes the Disk Parameter Block, relates it to STAT’s report, and discusses disk
space allocation. The report lines indicate:

. heading

. total capacity, including directory space, in records

. total capacity, including directory space, in kilobytes

. number of directory entries

. whether CP/M checks for diskette changes: 0 means not

. space controlled by one directory entry

. size of an allocation block (minimum space allocation unit)
. 128-byte records (not disk sectors) per track

. tracks reserved for monitor (not included in capacity)

h = L b o—

ooee -1 o

354

STAT

(disk info)

STAT { drivecode }
STAT drivecodeDSK:

The first form of the command reports the access status and the amount of free space
on disk drives. If no drivecode is given, it reports on all drives that have been accessed
since the last warm start. When drivecode is specified, that drive is accessed and
described. The report for each disk resembles:

A: R/IW, SPACE: 142K

The second form reports the facts that CP/M knows about the drive named by
drivecode. The report resembles:

B: Device Characteristics
4800: 128-Byte Record Capacity
600: Kilobyte Drive Capacity
128: 32-Byte Directory Entries
128: Checked Directory Entries
128: Records/ Extent
16: Records/ Block
64: Sectors/ Track
2: Reserved Tracks

355

356

Use this command to give temporary protection to a disk while testing a new
command program:

pip b:=testdata
stat a:=r/o
newprog b:testdata

If NEWPROG goes off the rails and tries to create a file on the A-drive, it will be
terminated at once. The protection is only temporary since the next warm start will
remove it.

Programs that do disk /O through the BIOS are not subject to this control; they can
write on any drive.

CP/M marks a drive read-only automatically if it finds that the diskette in it has been
changed. The check information used for this feature is saved when the drive is first
accessed after a warm start. On each following access CP/M compares the check
information to the diskette now in the drive and sets read-only status if there is a
difference. A warm start resets the status of all drives; new check data is built for each
drive as it is used.

STAT

(disk control)

STAT drivecode =R/O

The disk drive named by drivecode is marked read-only, This access status remains
in effect until the next warm start.

If a command tries to change a read-only disk in any way, it is terminated with the
message Bdos Err on x: R/O. The system waits for any character to be typed, then
performs a warm start.

357

358

The Recs and Bytes columns tell of the space allocated to a file. Recs is the
number of standard 128-byte records the file occupies. and is the closest estimate of a
file’s actual size. Files of ASCII text may not fill the last record and hence may be as
much as 127 bytes shorter than indicated. Bytes is the amount of space allocated to the
file, the amount of space that would be made available if the file were erased.

This command is the only one that reports on a file's access attribute (whether it is
marked read-only or not). Files are made read-only with the STAT command for file
control.

This command is the only one to report whether a file has the DIR or SYS attribute
(can or cannot be displayed by DIR). Files with the SYS attribute are displayed with
parentheses around the filename and filetype. Files are given the SYS attribute with the
STAT command for file control.

Since files are listed in alphabetical order this is a convenient command for making
a hard-copy list of a diskette’s directory to store with the diskette. Ready the printer.
Enter the command

stat d:«.«

supplying the drivecode of the diskette to be listed. Before pressing return, enter
control-p to start console copy. The report will be printed.

STAT

(file info)

STAT fileref

The fileref may be ambiguous. A drivecode may be part of it; if one is, that drive’s
directory is scanned. Otherwise the default drive’s directory is scanned.

The command produces a report similar to the following, with one line for each file
that matches fileref:

Recs Bytes Ext Acc

83 12K 1 R/W B:(BIGGER.PAS)
17 4K 1 RO B:SMALL.PAS

Bytes Remaining On B: 92K

The lines of the report are sorted in alphabetical order by fileref. If no file matches,
the command reports only NO FILE.

Files with the SYS attribute are indicated with parentheses around the filename,

359

360

Setting the R/O (read-only) attribute makes it impossible to alter the marked file in
normal use. This is permanent protection (as opposed to making a disk drive read-only,
which lasts only until the next warm start). If a command tries to alter a read-only file
(tries to erase it, rename it, or write to it), the command is terminated with the message
Bdos Err on x: file R/O. When the next character is typed, a warm start occurs.

PIP can override read-only file protection. It will do so only with the operator’s
approval, unless the W option is specified. In that case, PIP will replace read-only files
without any warning. Programs can (but should not) be written to remove read-only
protection from a file. Programs that do disk I/O through the BIOS are not subject to any
control.

The SYS attribute is used to shorten the output of the DIR command. Files that are
always present can be removed from the DIR display by giving them the SYS attribute.
The DIR attribute is the reverse of SYS; it makes the file appear in the DIR command’s
display.

Files with the SYS attribute are displayed only by the STAT command for file
information.

STAT

(file control)

STAT fileref $R/O
STAT fileref $R/W
STAT fileref $SYS
STAT fileref $DIR

The fileref may be ambiguous. If it includes a drivecode, the directory on that drive
is scanned. Otherwise the default drive is scanned. If no file matches fileref, the
command reports NO FILE and ends.

The stated attribute—R/O, R/W, SYS, or DIR—is set in every file that matches

— fileref. The command reports each fileref it finds, in the order in which they occur.

361

362

Since the relationship between physical device names and actual /O devices is set
by the code of the BIOS—usually written by the vendor of the system—the meaning of
an assignment will vary from system to system. The meaning of a physical name may
differ depending on the logical device to which it is assigned. The TTY: assigned to
CON: may mean something different than TTY: as assigned to PUN:.

Find out the exact meaning of each assignment in your system and fill in the
assignment chart on page 299. Use pencil, because these meanings can be changed by
changing the BIOS when new devices are added.

STAT DEV:
STAT logical=physical
STAT VAL.:

The first form of the command reports the present device assignments. The report
resembles this:

CON: = CRT:
RDR: = TTY:
PUN: = TTY:
LST: = LPT:

The names on the left are the names of the CP/M logical devices. Those on the right are
names of physical devices. The code of the BIOS determines the relationship between
physical device names and the actual /O devices attached to the system,

The second form of the command assigns the logical device name logical to the
physical device physical. Logical must be one of the four names on the left side of the
report; physical must be a physical device name. There is a table of physical device
names on page 298, and a blank 1/0 assignment chart on page 299.

The third form of the command displays a reminder list of all STAT operands, and a
list of the physical device names that may be assigned to each logical name.

STAT

(device
oelaligel)

363

364

When DIR or another command unexpectedly returns the message NO FILE, or
when the CCP cannot find a command that ought to exist, it is likely that the wrong user
code is active. The command USER 0 will return you to user code 0 under which most
files are stored. So will a cold start. A warm start should leave the active user code
unchanged.

Normally only files created under the active user code can be accessed. PIP can
read a file under another user code and store a copy of it under the active code. See the
USER command for a discussion of how to initialize a copy of PIP under a particular
code.

STAT

(user code)

STAT USR:

The command reports the active user code number and the codes for which files
exist on the default drive. The report resembles:

Active User: 0
Active Files: 0 9

The first line states the active user code. The second lists all user codes for which
files exist on the default drive.

365

366

Whenever the CCP begins execution it looks for a file $$$.SUB on the A-drive. If
it finds the file, it takes its next command from that file rather than from the terminal. The
SUBMIT command is a utility whose function is to create the $$$.SUB file in the rather
unusual format the CCP requires. SUBMIT, together with the XSUB command, allows
any routine series of commands to be initiated with a single command.

The CCP treats lines that begin with a semicolon as remarks. You can use this
feature to put remarks and operator instructions in your submit files.

The SUBMIT command in CP/M 2.2 has two bugs. An input line of length zero
causes the command to crash: it is impossible to submit a line of zero length. There is no
fix available for this problem. It also treats substituted control characters incorrectly. It
will reject “Z with the message Invalid Control Character. It will handle "z (lowercase)
correctly. A patch is available from Digital Research to correct the problem: see Chapter
12 for an example.

SUBMIT

SUBMIT {drivecode}filename { parameters... }

The command supplies a filetype of .SUB to make the first operand a complete
fileref. That file is read. Wherever in it a dollar sign followed by a decimal digit appears,
the two characters are replaced by the parameter that corresponds to the digit. The first
parameter replaces all appearances of $1, the second replaces $2, and so on. The
resulting file is written to disk with the name $$$.SUB.

If drivecode is given, the input will be read from that drive, but the output is always
written to the default drive. When the file filename.SUB can’t be found. the command
reports No SUB File Present and ends. The entire input file must be read before output
begins. If there is not enough working storage for this, the command reports Command
Buffer Overflow and ends.

Extra parameters have no effect. If the file references a parameter that wasn’t
given, the $n signal is replaced by nothing; that is, the characters vanish. The signal $0 is
replaced with filename. The up-arrow or caret character signals an ASCII control
character. For example, "Z is replaced by the ASCII SUB character produced by
control-z.

367

SYSGEN is discussed at length in Chapter 15; it is used to place the image of the
Monitor on the reserved tracks of a disk or diskette so as to make the disk bootable. The
command is often modified by the vendor of a system to suit the disk hardware.

SYSGEN is used in two cases. Most often it is used when initializing one or more
new diskettes for use. Each new diskette is formatted. SYSGEN is started and told a
source drive from which to read a copy of the Monitor. Then the new diskettes are put in
the destination drive in turn, and a copy of the Monitor is written on each.

When a new version of CP/M is being prepared, MOVCPM and DDT are used to
prepare a copy of the new Monitor in working storage. SYSGEN is started and given no
source drive (as the Monitor image is already in storage). The command is used to copy ~—~
the new Monitor onto one diskette so that it can be tested.

368

SYSGEN

The command prompts for the letter of a source drive, a drive from which it can read
an image of the CP/M Monitor. A null line signals that the Monitor image is already in
storage; if given a drive letter, the command reads the Monitor into storage from the
reserved tracks of that disk.

The command then repeatedly asks for the letter of a destination drive, a drive onto
which it should write the Monitor. A null line signals end of job; a warm start is done.
When given a drive letter, the command writes the Monitor image onto the reserved
tracks of the disk in that drive.

SYSGEN

369

370

The TYPE command is most often used to take a quick look at any printable file. A
printable file is one that contains only ASCII characters. Files such as .COM files
contain data that is not printable. These can be displayed with TYPE but the output will
be peculiar because the terminal will respond to the unprintable characters in unpredict-
able ways.

TYPE can also be used to copy a file to the printer. Enter the command, but before
pressing return, enter a control-p. That enables console copy; the lines displayed by
TYPE will also be written to the printer.

TYPE fileref

The file fileref is read from disk and written to the console.
Fileref must be explicit. If it is ambiguous, or if the file cannot be found, the
command responds with fileref? and ends.

371

372

The command STAT USR: will display the active user code and a list of all user
codes for which files exist on the default disk.

To copy files from one user code to another, use PIP with the G option. PIP will
read a file created under some other user code and make a copy under the active code.
Before you can use it, a copy of PIP must exist under the active user code. For instance,
in the sequence:

user 9
pip file9=fileQ[gO]

the response to pip will probably be PIP? because no copy of PIP has been made under
user code 9. The SAVE command must be used to make one:

user 0 go where PIP is

ddt pip.com load it into working storage
-go return to CCP

user 9 enter user code 9

save 30 pip.com make a copy of PIP

Now a copy of PIP has been made with user code 9 active. It can be used to read other
files and make copies under user code 9.

USER code

The number specified as code is made the active user code. The only files that can
be processed are those that were created when that code was active.

The value of code must lie between zero and 15 inclusive. If it does not, the
command responds with “code?” and ends.

373

374

XSUB greatly increases the SUBMIT command's usefulness. Commands that
require console input can be submitted for unattended execution. Without XSUB such
commands require that the operator remain at the terminal to respond to them.

XSUB's potential is stunted by the fact that it can only respond to a request for a full
line of input. Many programs request their input a character at a time; these requests are
still directed to the console. Only experiment will reveal which form of input a program
uses.

Three useful programs can run under XSUB: ED, DDT, and PIP. An ED session
can be automated except for bulk input with the | subcommand. A submit file can do a
complicated file alteration; the target file can be chosen through a SUBMIT parameter.
DDT can run from a script of subcommands delivered through XSUB.

A sequence of PIP transfers can be automated. PIP’s use is impaired by a bug in the
SUBMIT command of CP/M 2.2 that makes it unable to handle a null line. The null line
that tells PIP to end can’t be submitted.

A final consideration for some programs: XSUB makes the apparent size of storage
smaller than normal, and disables the warm-start mechanism. A few programs may not
be able to run in the reduced space. If a program accidentally damages the Monitor, the
damage won’t be repaired by a warm start when the command ends.

XSUB

The XSUB program alters the system so that when a program issues a Console
Input Line service request (BDOS service 10), the request will be satisfied with the next
line from the file A:$$3$.SUB, rather than with a line from the console. Until that file is
exhausted the message XSUB Active is displayed at each warm start, When the submit
file has been drained, the system returns to normal.

If XSUB is already active when the XSUB command is given, it reports the fact and
does nothing.

375

ASCII, HEX

The ASCII Code in Hex and Decimal

Use this chart to convert between ASCII characters and their representations in binary,
decimal, and hexadecimal. For example, the character “Z" has a decimal value of 90, a
binary representation of 01011010, and the name of the character that results from
pressing control-z is SUB.

101 3 bits in hex and binary

5 } Top border: maost significant

5A |«— Hex value
A Z «—1—— CHARACTER
1010 90 SUB

‘\(‘mmml—shiﬁ value

Decimal value

Left border: feast significant
4 bits in hex and binary

378

0 000 I oo = 00 3 m 4 100 101 6 110 7

00 10 20 30 40 50 60 70
] NUL DLE Space] @ ' p
0000 |0 i6 P32 48 64 80 DLE |96 12

o1 11 21 n 4] 51 61 i |
i SOH DC1 ! 1 A a q
0001 | 1 al17 Q3 49 6% SOH | 81 DCl |97 113

02 12 22 32 42 52 62 72
2 STX DC2 " 2 B b r
0010 |2 Bl18 R |34 50 66 STX |82 DC2 | 98 114

03 13 23 i3 43 53 63 3
3 ETX De3 # 3 5 c s
0011 | 3 |19 5|35 51 67 ETX |83 DC3|o9 1158

04 14 24 4 44 54 64 T4
4 EOT DC4 s 4 D d t
0100 |4 D20 T3 52 68 EOT| 84 DC4 | 100 116

[15 25 35 45 55 65 75
5 ENQ NAK P 5 E e u
o101 |5 E|21 1 EY 53 69 ENQ |85 NAK| 101 17

06 16 26 6 46 56 66 76
6 ACK SYN & 6 F f v
o110 |6 Fl22 V|38 54 70 ACK |86 SYN| 102 118

o7 17 27 31 47 57 67 77
7 BEL ETB ! 7 G g w
ot |7 G|23 w39 55 11 BEL | 87 ETB|103 119

08 18 28 38 48 & 68 78
8 BS CAN { 8 H h X
1000 |8 H |24 x| a0 56 72 BS |38 CAN | 104 120

09 19 29 39 49 59 69 79
9 HT EM) 9 I i v
1001 |9 1|25 y |41 57 73 HT |89 EM 108 121

0A 1A 4 A 4 SA 6A A
A LF SUB . J i z
1010 |10 1|26 z|42 58 74 LF |90 SUB|106 122

0B 1B 2B iB 4B 5B 6B 7B
B vT ESC + g K k {
1011 |11 K|27 [|43 59 75 VT |91 ESC |107 123

oc 1 21 ic i sC &C 7C
o FF FS . < L I |
1100 |12 L|28 \ |44 60 16 FF|92 FS| 108 124

[) D in 4D 5D 6D n
D CR GS - = M m }
1101 |13 M| 29 1|45 61 77 CR |93 GS|109 125

0E 1E 2E iE 4E 5E &E TE
E 50 RS ¥ > N n ...
1110 |14 N30 ~ |46 62 78 50|94 RS| 110 126

oF IF IF IF 4F SF 6F ¥
F | us / ? 0 o DEL
1111 |15 0|31 ~ |47 63 79 S1|9s us|111 127

379

380

Table of ASCII Control Characters

Character Value as Control
Name Dec. Hex. Shift Meaning and Use

NUL 0 00 (none) Null—fills time between data blocks; has no
information content. Blank paper tape reads
as a series of nulls.

SOH | 01 A Start of heading—opens address, format, or
other nontext section of a message.

STX 2 02 B Start of text—starts a text section of a mes-
sage; ends a heading if one is in progress.

ETX 3 08 2 End of text—ends a section of text in a mes-
sage. SOH, STX, or EOT may follow.

EOT 4 04 D End of transmission—ends a complete trans-
mission of one or more texts and associated
headings.

ENQ 5 04 E Enquiry—requests a remote device to send its
status or its identification or both.

ACK 6 05 F Acknowledge—an affirmative response from
a receiver to a sender.

BEL 7 07 G Bell—sounds an audible alarm.

BS 8 08 H Backspace—moves print head or cursor left
one position.

HT 9 09 I Horizontal tab—moves print head or cursor
right to the next defined tab stop (CP/M
tab stops are at every eighth column: 9, 17,
25:5.);

LF 10 0A J Linefeed—moves print head or cursor down
one line (note 1).

VT 11 0B K Vertical tab—moves print head down to the
next defined vertical tab stop (note 1).

FF 12 0C L Formfeed—moves print head to the defined
top line of the next page (note 1).

CR 13 0D M Carriage return—moves print head or cursor
to the left margin (note 2).

SO 14 OE N Shift out—sets alternate font of graphic char-

acters (21h to 7Eh) until SI is seen.

Character Value as Control
Name Dec. Hex. Shift Meaning and Use

SI 15 OF O Shift in—returns to standard graphic font. SO
and SI are the logical choices to control a
graphics mode, but are rarely used.

DLE 16 10 P Data link escape—marks start of one or more
characters to be interpreted as special trans-
mission control characters.

DCI 17 11 Q Device control 1 (formerly XON)—starts a
unit of a remote device. Some printers emit
DC1 when they are ready to receive data.

DC2 18 12 R Device control 2—starts a unit of a remote
device.

DC3 19 13 S Device control 3 (formerly XOFF)—stops a
unit of a remote device. Some printers emit
DC3 when their buffers are nearly full.

DC4 20 14 T Device control 4—stops a unit of a remote
device.

NAK 21 15 U Negative acknowledge—a negative response
from a receiver to a sender.

SYN 22 18 \Y Synchronous idle—fills time on an idle line to
maintain synchrony of sender and receiver.

ETB 23 17 W End transmitted block—marks end of a block
of sent data (but not the end of a message,
which may span blocks).

CAN 24 18 X Cancel—causes the transmitted block to be
disregarded by the receiver. Logical choice to
mark a deleted record.

EM 25 19 Y End of medium—marks the end of active data
on a tape or other medium. Notused in CP/M.

SUB 26 1A Z Substitute—replaces a character known to
have been garbled in transmission. Used by
CP/M to mark logical end of file.

ESC 27 1B Escape—marks the start of a sequence of
characters to be interpreted in some special
way by the receiving device,

FS 28 1C e File separator—see note 3.

GS 29 1D | Group separator—see note 3.

RS 30 1E - Record separator—see note 3.

381

382

Character Value as Control Meaning and Use
Name Dec. Hex. Shift
us 31 1F == Unit separator—see note 3.
SP 32 20 (none) Space—moves print head or cursor one posi-
tion to the right.
DEL 127 7F (none) Delete (formerly rubout)—to be disregarded

by the receiver. On paper tape a character
may be erased by punching all its holes, re-
sulting in DEL.

Note 1. Normally the print head moves only vertically. When agreed by the sending
and receiving parties, the print head may also be moved to the left margin during this

action.

Note 2. LF may imply a CR action, serving as a New Line (NL) character, but CR
should not imply a LF action. A sender using CR, LF to end lines works properly with a
receiver that returns the carrier on LF, but not with one that moves the carrier down the

page on CR.

Note 3: FS, GS, RS, and US are optional data delimiters. The standard does not
specify their use, except that they form a hierarchy with FS the most inclusive and US the
most specific. Note that the four are adjacent to the space, which may be treated as a fifth

separator.

Hexadecimal-Decimal Chart

This chart documents the decimal, hexadecimal, binary, and character representations
that can be encoded in a single 8-bit byte. Use it to convert between decimal and
hexadecimal as, for example, use of the SAVE command requires you to do. If the end
address of a program, as reported by DDT, were 25A2h, you need to SAVE the
equivalent of 25h pages. The chart shows that 25h is 37 decimal.

5 Top border: least significant
0101 4 bits in hex and binary

25 [=—— Hex value

2 37 - DECIMAL VALUE
oor0 | %
R __ ASCII character
Left border: muost significant (where applicable)

4 bits in hex and binary

383

384

0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

00 01 02 03 04 [IL] 06 o7
0 1] 1 2 3 4 5 6 7
0000 | NUL SOH STX ETX EOT ENQ ACK BEL

10 11 12 13 14 15 16 17
1 16 17 18 19 20 21 22 23
0001 |DLE DC1XON) DC2 pC3 (XOF) | Dped NAK SYN ETB

20 21 2 23 24 25 2 27
2 32 33 34 35 36 37 338 39
0010 | SPACE ! # s % &

30 31 3 33 34 35 6 37
3 48 49 50 51 52 53 54 55
ol o 1 2 3 4 5 6 7

40 41 42 43 a4 45 46 417
4 64 65 66 67 68 69 70 71
0100 |@ A B C 1] E F G

50 51 52 53 54 35 56 [3]
5 80 81 82 83 84 85 86 87
o101 P Q R 5 T u v W

60 61 62 63 64 65 66 67
6 96 97 98 99 100 101 102 103
o110 | ° a b c a e f e

70 71 72 73 74 5 T T
7 112 113 114 115 116 117 118 119
0111 P q r L] t u ¥ w

80 81 Bl 83 84 85 86 87
8 128 129 130 131 132 133 134 135
1000

90 91 92 93 94 95 96 a7
9 144 145 146 147 148 149 150 151
1001

AD Al A2 A3 A4 AS Ab AT
A 160 161 162 163 164 165 166 167
1010

BO Bl B2 B3 B4 BS B6 B7
B 176 177 178 179 180 181 182 183
1011

co cl [&] C3 [cs C6 c1
C 192 193 194 195 196 197 198 199
1100

Do D1 D2 D3 D4 D3 Dé D7
D 208 209 210 211 212 213 214 215
1101

EO El E2 E3 E4 ES E6 E7
E 224 225 226 2E7 228 229 230 231
1110

Fo F1 F2 F3 F4 Fs 3 F1
F 240 241 242 243 244 245 246 247
1111

1000 i 1001 1010 1011 1100 1101 1110 £ 1111
08 09 oA [il:] LS o 0E oF
8 9 10 11 12 13 14 IS
BS HT LF VT FF CR 50 St
18 19 1A 1B s 1D 1E IF
24 25 26 7 28 29 30 31
CAN EM suB ESC FS GS RS us
28 29 A B w0 n 2E IF
40 41 42 43 44 45 46 47
{) - + . - !
38 EL] 3A 3B C D 3E IF
56 57 58 59 60 61 62 63
8 9 H < = S 2
48 49 4A 4B 4C 4D 4E 4F
72 73 74 75 76 77 78 79
H I 1 K L M N 0
58 59 SA 5B 5C SD SE SF
88 89 90 91 92 93 94 95
X ¥ 4 | 1 1 b -
68 69 6A 1] 6C &0 [13 6F
104 105 106 107 108 109 110 111
h i i k I m n o
78 79 1A 7B 7c D TE TF
120 121 122 123 124 125 126 127
% y : { [H s DEL
88 89 BA 8B 8C 8D 8E 8F
136 137 138 139 140 141 142 143
98 99 9A 9B o an 9E F
152 153 154 155 156 157 158 159
A8 A9 AA AB AC AD AE AF
168 169 170 171 172 173 174 175
BE B9 BA BB BC BD BE BF
184 185 186 187 188 189 190 191
cg 9 CA CB cC D CE CF
200 201 202 203 204 205 206 207
D8 D9 DA DB DC DD DE DF
216 217 218 219 220 221 222 223
ES E9 EA EB EC ED EE EF
232 233 234 235 236 237 238 239
F8 F9 FA FB FC FD FE FF
248 249 250 251 252 253 254 255

385

386

Hexadecimal Digit
most <=— significant —= least

0
4,096
8,192

12,288
16,384
20,240
24,576
28,672
32.768
36,864
40,960
45,056
49,152
53,248
57,344
61,440

TMOOW R Lo —o

0

256
512
768
1,024
1,280
1,536
1,792
2,048
2,304
2,560
2,816
3,072
3,328
3,584
3,840

0
16
32
48
64
80
96

112
128
144
160
176
192
208
224
240

= IEN B RV R R T S)

10
11
12
13
14
15

16-Bit Hexadecimal-Decimal Conversion (for positive and unsigned values)

Use this chart to convert between decimal and 16-bit hexadecimal numbers when the
numbers are positive or are not signed (use the chart on page ?? for signed, negative

numbers).

To convert hex to decimal, sum the numbers corresponding to each digit. For

example, given 7BDEh:

(st digit) 7
(2nd digit) B
(3rd digit) D
(4th digit) E

(result)

To convert decimal to hex, subtract the largest possible number for each hex digit.

Given 11,480:

+
31,710

28,672
2,816
208

14

11,480
8,192

3,288

3,072

216
208

8

Il

2 (1st digit)

C (2nd digit)

D (3rd digit)

8 (4th digit)

e

Hexadecimal Digit
most -<=—— significant —= least

0 3,840 240 16
1 3,584 224 15
2 3,328 208 14
3 3,072 192 13
4 2,816 176 12
3 2,560 160 11
6 2,304 144 10
7 2,048 128 9
8 28,672 1,792 112 8
9 24,576 1,536 96 7
A 20,480 1,280 80 6
B 16,384 1,024 64 5
C 12,288 768 48 4
D 8,192 512 32 3
E 4,096 256 16 2
F 0 0 0 1

16-Bit Hexadecimal-Decimal Conversion (for signed, negative values)

Use this chart to convert between decimal and hexadecimal numbers when the numbers
are negative. The most significant hex digit of such a number is 8 or greater. Use the
chart on page ?? for positive or unsigned numbers.

To convert hex to decimal, sum the numbers shown for each corresponding digit.
For example, in order to PEEK location B13Ah the BASIC programmer must convert it:

(Ist digit) B = 16,384
(2nd digit) 1 = 3,584
(3rd digit) 3 = 192
(4th digit) A = + 6

20,166 — use PEEK(-20166)

To convert decimal to hex, subtract the largest possible number for each digit.
Given -14,283:

14,283

— 12,288 = C (Ist digit)
1,995

- 1,792 = 8 (2nd digit)
203

- 192 = 3 (3rd digit)

11 =5 (4th digit)

387

8080, Z80

XX 1dD 3 JWD
XX TIX Sar WYX
XX IO a1 VYO
XX INV 321 YNV
XX 14S da g4s
NOLLVINdINVIN L4 XX ns a1 gns
X DV a1 Dav
di ava XX 1av 31 gav
dr xDa 31 ¥Da
s 1Sy dir XNI 31 YNI
pudy 13y

Ippe pud) Ippe TIVD VIAD
ippe pudf Ippe JII vvda
THOd afe10]s @ WNOOE | WU i WNJOE §a1 @ wnooe

[RUONIIPUOD) [BUONIPUOdUN vIR(] NQ-9] eIR(] 11q-8

YAISNVIEL TOHINOD

SNOLLDNYLSNI DILHWHLIAV

“19 UONOANSUT 0M] Y] rdwod 03 speyDd Y

usamyaq dif '2Fed oy U0 SUOIIEO[JEILUIS JB SUONINIISUL JR[ILIS YIIM ‘JRULIOJ JUIES AU} UI 195 UOHINNSUL)87
oy sAejdsip LeYd SUIMO[[0) DY, SUOHONISUI JO XBIUAS JO 3N 3y} [[291 0] PIE AIOWAW € SB LBYD Y1 35

‘Q XVLS St 10 g XYL1S St papod 3q Aew pg XV 1S st umoys

UOTIONISUI 3Y) 210J3IAY], "] 10 g 1Yo 10} purs Kew pq,, UONEIAIGQE Y} 1Byl Smoys Ay Yy ‘afdurexs
10 “SUOTIBIADIQQER ASBIIIMO[SE umoys a1e Area Kew jey sued ay) taseoraddn ur umoys are suononnsut
ay jo sued paxiy ayy, sdnoid [euonouny ut D S80S/0K0S [AIU] AUl JO 198 uonanusut Ay SABAsIp weyd sy

NEJ|qE], [BUONOUN —)IS UOHINLSUT $808/0808

390

JURISUOD 1G-¢ ¢ §

JUBISUOD 1IG-§ @ XX

H'a'g msd @ yd

JUBISUOD 1G-9] © XXXX JUEISUOD SSIppE :Ippe dS'H'g'g : di
d'W'Hd'Od' DN DZN'Z © pud WTHI'a'dda'v : du ad : pq
Koy
yd dod yd HSNd
THLX DHOX
Ippe 7 TH1 Ippe dTHS Ippe VA1 Ippe V1S
Pa4 XVA1 Pq XVLS
xxxx‘dr ¥ THAS | xx‘Sar [AW da1'3ar AOW
a1 « 1018 10]S « a1 821 : 3 821 «— 1078 101S « Fal 8a1 : Sm
BRI 9-9] ele(] 1q-3
SNOLLONALSNI INAWAAOW V.ILVA
WIS INTY
)Ll
DD JLS JTH
XX LNO XX NI 14 1d AvY
dON VT

TOHLINOD ANIHOVIN

SIAIHS

NOILV.LOY

391

(p+1x) dD XX dD da1 dD
(P+4x)'s sgY | s STY (P+1x) YOX XX JOX a1 Jox
(p+1x)'s 19§ | 8ar's 14S (P+4x) MO XX M0 31 A0
(p+1)s L1d | ar's Id (p+1X) ANV XX 9% 31 ANV
dg'1H 29S| (P+4x) DdS XX DHS dar DS
NOLLVINJINVIA LId (p+4X) €4NS XX dns a1 4ns
do'tH Dav | (p+1x) DAV XX DAy a1 Dav
XX ZNId NIF¥ | do'xy gav | (p+3x) dav XX aqgv a1 gay
119Y dir Daa 321 DHa
s LSY di DONI 321 DNI
pud 194 AN
ppe‘pud TIVD | IpPE TIVD 1dD
Ippe‘pud dr | ippe dr vvd
XX'ZD Ml XX Ml
(xy) dr 23BI0IS ¢ WINDO® | W Wnooe 8o1 1 wnooe
[puonipuo) | [eUONIpUOdU() | BIB(] 11G-9] eR(19-8
YAASNVIL TOYINOD SNOLLDNYLSNI DILANWHLIAV

*I9[QUIAsSE DN Ya1easay [endiq
U] YIIA PAINQLISIP SO10RW Y] 10} suondnasul Jo[iZ anbiun oy 10 xeiuks ay1 smoys Heyd SUIMO[[0) YL,

"$198 UONONISUl om) Yy aredwos 01 SUBYD Y UIIMIaq
dip oFed oy uO SUOHEIO] JR[ILIS 1B SUONONISUL IB[ILUIS [IIA *JRLLIOJ SWES Y] U J3S UONONISUL $08/0808
ay sAejdstp 1eyd snoraaid 9y), “SUOLIONISUL JO XBIUAS 10 95N 3] [[BIA1 0] PIE AIOWAUIL B S LIBYD) 35

“Al'dS @7 B 10 “X|'dS @7 Se 10 “TH'dS @7 $' Papod 2q Aew Xy'dS @7 B umoys uononnsut
oy 21052134, “A| 10 ‘X| “IH Jo AuE Joj pumis Aew Xy, UOnRIAdIGQE Ay) eyl smoys £ ay “ajdwexa
10, "SUONBIADIGQE JsEIIIMO] st umoys are Kmea Aew jey) sued oy tasedraddn ur umoys a1e suondnnsul
oy Jo sued paxyy ayy -sdnoid [euonouny ur NJdD 087 30117 Y Jo 19s uononnsur ayy sAefdsip weyd sy,

nesjqe |, [Buonoun j—jag uondnysuy 087

392

WURISUOD JIg-¢ S

WURISUOD 11G-§ © XX

AUXITH AT D Ay xd

393

AI'XI'dSIH'3a'Dg © di

ON'D'ZN'Z : # WEISUOD 11Q-G| © XXXX"IppE THALI'XT @ xy dS"IH'Ha'Dd © dq
dWHd O IND'ZN'Z & pud CIHFTH'I"'a>g'y : fa AI'X] @ I Ad'Dd : pq
Koy

(P+1)'V aTvi(P+%) a1

xd dod xd HSNd
XU'(ds) Xd| THIAAa Xd

(ppe)ds | dr@ppe) Gppe)'y 1| v'Gppe) i

PO’V a1l wvipa) ai
xxxx-da ai XY‘ds ai X¥‘3al a1 Far'8a1 ai

321 «— 1038 1018 « Fai1 a1 : 321 821 « 1078 10]8 « 21 821 @ Sa1
BIR(] 19-9] ele(] 1q-8
SNOLLDMULSNI INHFWAAOIW V.LVA
VI d1 ¥'v di
I'v dl I'v ai ayy
0 I and
AVIY X4 XXd [(P+1X) TS B2l TS (P+1%)|D¥Y Fa1 DWA VO
Far'(D) 1LNO (D) SN 400 A0S (P+1){DTY 821 DY VOTY
V' (XX) LNO (XX)'V NI 19 I [(P+X)VYS BUvVYES (P+1X)| Y S0 WY vy
dON |(P+1X) ¥7IS FaayIS (P+0)| 19 81 T vy
TOALNOD ANTHOVIN SLAIHS NOILLV.LOY

Z80 Assembler Syntax—
Cross-Reference

This chart shows the assembler syntax of the instructions that are unique to the Z80
for three different assemblers. The first column shows the standard Zilog syntax. The
second column shows the “TDL mnemonics” used in some non-Zilog assemblers. The
third column shows the syntax of the macros contained in the file Z80.LIB, distributed
with Digital Research’s MAC assembler product.

Use the chart when a Z80 instruction is needed in a program to be assembled with
MAC. Proceed as follows:

1. Find the instruction wanted in Z80 Instruction Set Functional Tableau, page ?7.

2. Flip back one page to the 8080/8085 Instruction Set Functional Tableau. If there is
an 8080 instruction at the same location on that page. code that instruction.

3. Look the instruction up in this chart (the chart is organized in the same groups and in
about the same order). If the instruction does not appear, then the macro (and the
TDL mnemonic) has the same syntax as the standard Zilog instruction; code the
Zilog instruction.

4, Code the macro from the third column of this chart.

Arithmetic Instructions, 8-bit

DEC (xr+d) DCR d(xr) DCRx d
INC (xr+d) INR d(xr) INRx d
ADD (xr+d) ADD d(xr) ADDx d
ADC (xr+d) ADC d(xn) ADCx d
SUB (xr+d) SUB d(xr) SUBx d
SBC (xr+d) SBB d(xr) SBCx d
AND (xr+d) ANA d(xr) ANDx d
OR (xr+d) ORA d(xr) ORx d
XOR (xr+d) XRA d(xr) XORx d
CP (xr+d) CMP d(xr) CMPx d
Arithmetic Instructions, 16-bit
INC Xr INX Xr INXxr
DEC xr DCX xr DCXxr
ADC HL,bp DADC bp DADC bp
SBC HL,bp DSBC bp DSBC bp
ADD xrbp DADx bp DADx bp

394

Control Transfer Instructions

bt | - (hx) PCHx PCHx
JR XX IJIMPR xx JR XX
JR CZ,XX JRecz xx JRez xx

Bit Manipulation Instructions

SET s,reg SET s,reg SETB s,reg
BIT s,(xr+d) BIT s,d(xr) BITx s,d
RES s.(xr+d) RES s,d(xr) RESx s,d
SET s,(xr+d) SET s,d(xr) SETx s.d

Rotation and Shift Instructions

RL reg RALR reg RALR reg
RL (xr+d) RALR d(xr) RALx d
RR reg RARR reg RARR reg
RR (xr+d) RARR d(xr) RARx d
RLC reg RLCR reg RLCR reg
RLC (xr+d) RLCR d(xr) RLCx d
RRC reg RRCR reg RRCR reg
RRC (xr+d) RRCR d(xr) RRCx d
~ SLA reg SLAR reg SLAR reg
SLA (xr+d) SLAR d(xr) SLAx d
SRA reg SRAR reg SRAR reg
SRA (xr+d) SRAR d(xr) SRAx d
SRL reg SRLR reg SRLR reg
SRL (xr+d) SRLR d(xr) SRLx d

Machine Control Instructions

IN reg,(C) INP reg INP reg
OUT (C),reg OUTP reg OUTP reg
LD ALl LDAI LDAI

LD ILA LDIA STAI

LD AR LDAR LDAR

LD R,A LDRA STAR

Data Movement Instructions, 8-bit

LD reg,(xr+d) MOV reg,d(xr) LDx reg,d
LD (xr+d),reg MOV d(xr).reg STx reg,d
LD (xr+d),xx MVI d(xr).xx MVIx xx.d

395

396

LD
LD
LD
LD
EX
PUSH
POP

CPI
CPD
CPIR
CPDR

SP.hx
XT,XXXX
(addr),rp
rp.(addr)
(SP).,hx
Xr

Xr

Data Movement Instructions, 16-bit

SPhx

LXI XILXXXX
SrpD addr
LrpD addr
XThx

PUSH «xr

POP Xr

Indirect Comparison

CCl
CcCDh
CCIR
CCDR

SPhx
LXIx xxxx
SrpD addr
LrpD addr
XThx
PUSHxr
POPxr

CCl
CCD
CCIR
CCDR

398

Most often the parameter letters are omitted entirely, causing all files to be located
on the default drive. The assembly of a large file can be speeded by proper use of the
parameters.

When the program is expected to have errors, a fast syntax check can be had by
suppressing both output files. Errors are reported at the console as usual but the assembly
runs faster when no output files are written.

Most of the assembler’s time is spent writing the listing file or waiting for the drive
to seek between files. Suppressing the listing file will shorten assembly time.

Diskette hardware is usually faster at switching between drives than at seeking on
one drive. Putting the input and output files on different drives will often speed a long
assembly. Hard disk drives seek very quickly. If you have one, place the output files, or
all the files, on it.

A large listing may fill the output disk causing the assembler to abort with the
message OUTPUT FILE WRITE ERROR. In this case direct the listing to the console
and use control-p to get a paper copy of the file. This allows a complete assembly, but
execution is slowed because the assembler is limited by the speed of the printer.

ASM {drivecode}filename{.shp}

The file named filename. ASM is assembled. Assembly errors are reported to the
console. A file representing the object program may be produced as filename. HEX. A
file containing the listing may be produced as filename.PRN.

If the optional drivecode is given, that drive is made the default drive for all files.
The parameter letters may specify other drives.

The optional parameter letters shp occupy the position of a filetype, but they specify
the drives used for the three files. Parameter letter s specifies the drive (one of A...P) to
be searched for filename ASM.

Parameter letter s determines the drive (one of A...P) where filename HEX will be
written. If & = Z, the object file is suppressed.

Parameter letter p controls the destination of the listing. When p is one of A...P, a
listing file is written to that drive. If p = X, the listing is written to the console; p=Z
suppresses it.

399

400

ASM Error Messages

D: The operand is too large to store in the defined space.

E: An operand is required. None can be found, or the operand expression cannot be
interpreted.

L: This label is a duplicate of that on another statement, or no label is allowed on this
type of statement.

N: This operation is not available in the ASM assembler.

O: Either a character string is too long, or the operand expression is too complex to be
evaluated.

P: Label or expression has a different value on the second assembly pass than on the
first. May be attributable to duplicate labels or reference to a label before it is
defined. Fix all other errors first; P errors often go away with them.

The register operand is not correct for the operation, as in DAD A.

S: A required statement field can't be identified, as when the label is omitted from an
EQU. May result from the use of double rather than single quotes on a character
constant,

U: A label in the operand expression hasn’t been defined prior to this statement (an
EQU, IF, SET, or ORG), and it must be.

V: The value of the operand expression is wrong for the type of operation, as in MVI
A,300.

CANNOT CLOSE FILES: An output file can’t be closed, probably because the diskette
in that drive was changed and so made R/O.

NO DIRECTORY SPACE: Anoutput file can’t be created because that disk’s directory
is full,

NO SOURCE FILE PRESENT: The filename was omitted from the command line, or
filename.ASM is not on that disk.

OUTPUT FILE WRITE ERROR: There is either no more data space or no more
directory space for the output file.

SOURCE FILE NAME ERROR: The filename contained an asterisk or question
marks. It must be explicit.

SOURCE FILE READ ERROR: This error probably can’t occur; the assembler would
be terminated with “BDOS Error on x:” instead.

SYMBOL TABLE OVERFLOW: There are more labels defined in the program than the
assembler has room to store.

Statement Formation in ASM

1. A statement contains these fields:

—

sequence

sJequence:

label:

operation:

operand:

comment:

label operation operand comment

Any number of decimal digits and spaces. The field is treated as
spaces; it is not checked for numeric format or correct statement
order.

Any number of letters and digits, the first a letter.
Lowercase letters are treated as uppercase.

The first 16 characters are used; others are ignored.

Dollar signs may be interspersed in the label; they are ignored
and not counted.

Op codes, directives, and operators (e.g., SHL) are reserved;
use of one as a label causes an error.

A colon at the end of a label is treated as a space.

An instruction operation code or a directive,

Op codes and directives are reserved words; they are recognized
wherever they appear in the line, even in the first character of
the line.

An assembler expression (see the next chart).

Any characters except exclamation mark. A comment is treated
as spaces.

2. All fields are optional and may be omitted, except that most operations require an

operand.

3. More than one statement may appear in an input line. Statements are separated by

exclamation marks.

4. Any number of spaces may be used before, between, and after fields.

5. Anoperation can begin in the left margin. When a label is present, a space or colon
must separate it from the operation. A space must separate operation and operand.

401

402

Elements of ASM Expressions

. Numeric constants represent unsigned 16-bit integers. Dollar signs may be inter-

spersed among the digits: they are ignored.

binary digits and B: 0110B 1010$1100$1110B
octal digits O or Q: 6Q 5316Q
decimal digits, optional D: 6 2766D
hexadecimal digits and H: 6H 0ACEH

. Character constants usually represent their hexadecimal ASCII values as unsigned

16-bit integers. See the DB and DW directives for their different treatment of
characters.

A single character A is equivalent to 41H.
Two characters AB are equivalent to 4142H.
Multiple characters MESSAGE are allowed in DB only.

. Labels represent the unsigned 16-bit integer value given them at the point at which

they are defined. This is usually the address of the operation the label precedes.
EQU, ORG, and SET give their labels the value of their operands.

. Operation code names represent their binary value with zero bits in any register

fields.

. The ten register names represent these values:

A=17 B=20 C=1 2
H=4 L=5 M=6 SP=6 PSW =6

. The special name $ represents the address of the next byte to be assembled (the

location counter).

7. The result of any compound expression is an unsigned 16-bit integer. Use parenthe-
ses to force the order of evaluation wanted. In this display x and y stand for any of the
elements above, or any compound expression in parentheses:

+y
-y
x+y
x-y

X%y

xly

x MOD y

identity (= y alone)
twos’ complement
unsigned sum
unsigned difference
unsigned product
integer division
remainder of x/y

NOT y
xAND y
x ORy
xXORy
xSHL ¥
xSHR y

ones’ complement
logical and
inclusive or
exclusive or

x shift left y bits
x shift right v bits

Here are examples of complete statements using expressions:
MVI A, MOV OR ((A SHL 3) OR B): put a “MOV A B” opcode in A
ORG ($+00FFH) AND OFFOOH: move to next page boundary.

403

404

Most often the parameters are omitted entirely, causing all files to be located on the
default drive. The assembly of a large file can be speeded by proper use of the
parameters.

When the program is expected to have errors, a fast syntax check can be had by
suppressing all output files (HZ PZ —S). Errors are reported at the console as usual but
the assembly runs faster when no output files are written.

Except when there are many macros to expand, most of the assembler’s time is
spent writing the listing file or waiting for the drive to seek between files. Suppressing
the listing file (PZ) will shorten assembly time. If the SID debugging tool is not to be
used immediately after the assembly, suppress the symbol table as well (PZ —S). Should
you later want to use SID, produce a symbol table quickly by writing only that file (PZ
HZ).

Diskette hardware is usually faster at switching between drives than at seeking on
one drive. Putting the input and output files on different drives will often speed a long
assembly. Hard disk drives seek very quickly. If you have one, place the output files, or
all the files, on it.

A large listing may fill the output disk causing the assembler to abort with the
message OUTPUT FILE WRITE ERROR. In this case direct the listing to the printer
(PP or PP +8) to get a paper copy of the file. This allows a complete assembly, but
execution is slowed because the assembler is limited by the speed of the printer.

MAC {drivecode}filename { $ parameters }

The file named filename ASM is assembled. Assembly errors are reported to the
console. A file representing the object program may be produced as filename. HEX. A
file containing the listing may be produced as filename.PRN. A symbol table file may be
produced as filename . SYM.

If the optional drivecode is given, that drive is made the default drive for all files,
unless a parameter specifies otherwise.

The optional parameters control a number of features (a complete table of param-
cter values appears following this topic). The disposition of the four files is controlled by
parameters. The parameter Ad (where d is a drive letter) specifies the drive to be
searched for filename ASM. The parameter Ld specifies the drive to be searched for
macro libraries.

The parameter Hd determines the drive (d one of A...P) where filename HEX will
be written. HZ suppresses the obiject file.

The parameter Pd controls the destination of the listing. When d is one of A...O, a
listing file is written to that drive. Drive P: cannot be specified; PP causes the listing to
be written to the LST: device. PX sends the listing to the console; PZ suppresses it.

The parameter Sd controls the destination of the symbol table, where d has the same
meanings as for the Pd parameter. The symbol table may be suppressed with either SZ or
—S. Specifying +S sends the symbol table after the listing to whatever that file’s
destination may be.

405

406

MAC Parameters

Command Parameters, Used Following $ in the MAC command:

Pd
PP
PX
PZ
+Q

+R

Sd
+S

Search for the source file on drive d.

Write the .HEX file on drive d (with RMAC, use R rather than H
to control the .REL file).

Suppress the .HEX file.

Search for all .LIB files on drive d.

List the contents of .LIB files as they are read.
Don’t list the contents of .LIB files.

List all macro lines as they are substituted (normally, only those
that produce object code are listed).

List no lines produced from macro substitution (includes the
bodies of IRP, IRPC, and REPT).

List only the object code (hex values in the left column of the
listing) produced from macro substitution.

Write the listing as a .PRN file on drive d.
Write the listing to the logical list device.
Write the listing to the logical console device.
Suppress the listing entirely.

Include local symbols (names beginning ??) in the symbol
table.

Don’t include local symbols in the symbol table (default).

Add 100h to the operands of all ORG statements; assists in the
construction of a .PRL file under MP/M. This function is not
available in RMAC where R controls the .REL file,

Write the symbol table as a .SYM file on drive d.

Write the symbol table following the listing file, whatever its
destination may be.

Suppress the symbol table display.

Source File Controls, Inserted as Lines Within the Source Program:

$-PRINT
$+PRINT
$+MACRO
$-MACRO
$+MACRO

Stop producing a listing (this line is not printed).
Start producing a listing (this line is printed).
Start listing lines produced by macros.

List no lines produced by macros.

List only object code produced by a macro.

S

MAC Error Messages

A balanced pair of statements doesn’t match: there's an extra ELSE, ENDM, or
ENDIF, or one out of place.

The statement allows multiple expressions and one expression isn't properly delim-
ited from the next.

The operand is too large to store in the defined space.

An operand is required. None can be found, or the operand expression cannot be
interpreted.

An invalid character (not printable, not HT, CR, or LF) appears in this line.

This label is a duplicate of that on another statement, or no label is allowed on this
type of statement.

i Macro expansion is out of room; a macro is probably calling itself without limit,

This operation is not available in the MAC assembler.

Either a character string is too long, or the operand expression is too complex to be
evaluated. Within a macro too many substitutions are called for, or 10,000 local
labels have been generated.

Label or expression has a different value on the second assembly pass than on the
first. May be due to duplicate labels or use of a label before it is defined. Correct
other errors first; that often makes P errors go away.

The register operand is not correct for the operation, as in DAD A.

A required statement field can’t be identified, as when the label is omitted from an
EQU. May result from the use of double rather than single quotes on a character
constant

A label in the operand expression hasn’t been defined prior to this statement, and it
must be.

The value of the operand expression is wrong for the type of operation, as in MVI
A,300.

CANNOT CLOSE FILES: An output file can’t be closed, probably because the diskette

in that drive was changed and so made R/O.

INVALID PARAMETER: One of the parameter letters in the command line is not

known or has the wrong argument.

NO DIRECTORY SPACE: An output file can’t be created because that disk’s directory

is full.

NO SOURCE FILE PRESENT: The filename was omitted from the command line, or

there is no filename.ASM on that disk.

OUTPUT FILE WRITE ERROR: There is either no more data space or no more

directory space for the output file.

407

408

SOURCE FILE NAME ERROR: The filename contained an asterisk or question
marks. It must be explicit.

SOURCE FILE READ ERROR: This error probably can’t occur; the assembler would
be terminated with “BDOS Error on x:" instead.

SYMBOL TABLE OVERFLOW: There are more labels defined in the program than the
assembler has room to store.

UNBALANCED MACRO LIBRARY: In a macro library a macro definition isn’t
properly closed with ENDM.

Statement Formation in MAC

1. A statement contains these fields:
sequence label operation operand comment

sequence: Any number of decimal digits and spaces. The field is treated as
spaces: it is not checked for numeric format or correct sequence.

label: any number of letters and digits, the first a letter,
Lowercase letters are treated as uppercase.

? and (@ are treated as letters in labels. Labels beginning ?7 are
not listed in the symbol file.

The first 16 characters are used; others are ignored.
Dollar signs in the label are ignored and not counted.
A colon at the end of a label is treated as a space.

Op codes, directives, and operators (e.g., LOW) are reserved,;
they may not appear as labels.

operation: An instruction operation code or a directive.

operand: An assembler expression (see the next chart).

;comment: Any characters except exclamation mark. A comment is treated
as spaces. In a macro a comment headed by ;; is neither stored

nor listed.

2. All fields are optional and may be omitted, except that most eperations require an
operand.

3. More than one statement may appear in an input line. Statements are separated by
exclamation marks.

4. Any number of spaces may be used before, between, and after fields.

5. Anoperation can begin in the left margin. When a label is present, a space or colon
must separate it from the operation. A space must separate operation and operand.

409

410

Elements of MAC Expressions

. Numeric constants represent unsigned 16-bit integers. Dollar signs may be inter-

spersed among the digits; they are ignored.

binary digits and B: 0110B 1010$1100$1110B
octal digits O or Q: 6Q 5316Q
decimal digits, optional D: 6 2766D
hexadecimal digits and H: 6H OACEH

. Character constants usually represent their hexadecimal ASCII values as unsigned

16-bit integers. See the DB and DW directives for their different treatment of
characters.

A single character A is equivalent to 41H.
Two characters AB are equivalent to 4142H.
Multiple characters MESSAGE are allowed in DB only.

. Labels represent the unsigned 16-bit integer value given them at the point they

appear. This is usually the address of the operation the label precedes. EQU., ORG,
and SET give their labels the value of their operands.

. Operation code names represent their binary value with zero bits in any register

fields.

. The ten register names represent these values:

0 C=

A=7 B 1 3
L=35 M=6 SP =6 PSW = 6

H=4

. The special name $ represents the address of the next byte to be assembled (the

location counter).

7. The result of any compound expression is a 16-bit integer. Use parentheses to force
the order of evaluation wanted. In this display x and y stand for any of the elements

above, or any compound expression in parentheses:

Ty

-y
x+y
x—y
x*y
x/ly

x MOD y
HIGH y

identity (= v alone)
twos’ complement
unsigned sum
unsigned difference
unsigned product
integer division
remainder of x/y
same as y SHR 8

NOT y
xANDy
x ORy
xXORy
x SHL y
xSHR y
LOW y

ones’ complement
logical and
inclusive or
exclusive or

x shift left y bits

x shift right y bits
same as y AND
00FFh

The relationals return FFFFh for true, 0000h for false:

xLTy
xLEy

xEQy
xNEy

xGEy
xGTy

NUL returns FFFFh (true) if the rest of the line is blank.

411

412

Summary of Macro Substitution in MAC

The Macro Call

A macro is defined witha MACRO directive, which provides a name and template
of arguments for the macro:

label MACRO {name,...}
AMACRO MACRO NAMEI NAME2NAME3 NAME4

The lines following, up to an ENDM directive. compose the macro body. These lines are
stored for later use.

A macro call occurs when, in the source, the macro name is found, delimited by
spaces. The rest of that statement is part of the macro call; other statements on that line
are discarded.

The assembler finds all tokens after the macro label. A token is:

A list: any sequence of characters enclosed in <angle brackets>

An expression: any sequence of characters between % and a comma

A string: any sequence of nonspaces up to a comma.

Tokens are assigned one-to-one to the argument names, according to their delimi-
ters:

Lists: The outer set of angle brackets is dropped: the sequence of characters within
is assigned to the matching argument,

Expressions: The characters are evaluated as an expression; the resulting 16-bit
unsigned number is converted to decimal; the decimal characters are assigned to
matching argument.

Strings: The characters (forced to uppercase) are assigned to the name.
For example, given these two statements,

address equ 0200H
amacro %address shr 8, mvi,<token3,<this too=>> token4

NAME1 receives the characters: 32 (evaluated expression)
NAME?2 receives the characters: MV|

NAMES receives the characters: TOKEN3,<THIS TOO>
NAME4 receives the characters: TOKEN4

Extra tokens are discarded. Omitted tokens become null strings.

e An S error is reported if a space appears in a string token.

A Uor P error is reported if a label used in an expression has not been defined prior
to the macro call.

An E error is reported if an expression is badly formed.

The Macro Body

After assigning tokens to names, the assembler processes the lines of the macro
body as if they were part of the source program.

Wherever in a body line it finds an argument name delimited by spaces or other
special characters, the assembler substitutes the token assigned to that name. Given the
previous macro call,

name4 name2 a,namel+1 becomes TOKEN4 MVI a,32+1

As an argument of another macro;

s mac2 name3 becomes mac2 TOKEN3,<THIS TOO>
Where an argument is not clearly set off by special characters,substitution can be
forced by prefixing it with &:
Xyzname4 is not changed, the “name4™ argument is not seen.
xyz&named becomes xyzTOKEN4

Where an argument runs up to other letters its end must be marked with &:
namedxyz is not changed, the “name4™ argument is rot seen.
named&xyz becomes TOKEN4xyz

If an argument name is to be recognized inside a character constant.the & must be
used and the name must be coded in uppercase:

db ‘name2.” is not changed, the & is required.
db ‘&name2’ is not changed, “name2” doesn’t equal “NAME2"
db ‘&NAME2" becomes db ‘MVI'

S

413

Assembler

416

Topical Summary of Assembler Directives

Directive

DB operands...
DW operands...
DS operand
EQU operand

SET operand

ORG operand
DSEG

IF operand
ELSE
ENDIF

MACLIB filename
MACRO arguments...
IRP dummy,<tokens=>
IRPC dummy token
REPT operand
EXITM

ENDM

SET operand

LOCAL names...

DS operand

ORG operand
ASEG

CSEG

DSEG
COMMON /name/
END {operand}

Assembler Page

Data Definition

Function

all
all
all
all

all

all
RMAC

Conditional Assembly

all
MAC
all

MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC

Program Structure

all
all
RMAC
RMAC
RMAC
RMAC
all

421
425
423
429

443

439
423

433
425
427

437
437
433
435
443
431
429
443
435

423
439
419
421
423
419
427

Assemble 8-bit constants
Assemble 16-bit constants
Reserve space in program
Give name to value (perma-
nent)

Give name to value (tem-
porary)

Set location counter

Move to data segment

Skip input if operand=0
Alternate part of IF group -/
Close of IF group

Substitution and Macro Processing

Include library file

Open macro definition

Repeat text over items

Repeat text over letters

Repeat text operand times

Stop macro or repeat group

Close macro or repeat body

Give name to value (temporary)
Declare local label-names

Reserve space in program
Set location counter

Move to absolute segment
Move to relocatable code
Move to data segment

Move to a common segment
End source program

Directive

NAME ‘program’
EXTRN labels...
PUBLIC labels. ..
ASEG
COMMON /name/

PAGE {operand}
TITLE ‘title-line'

Assembler

Program Linkage

RMAC
RMAC
RMAC
RMAC
RMAC

Listing Control

MAC
MAC

Page

439
431
441
419
419

441
445

Function

Set name of object code
Declare foreign labels
Declare entry labels

Move to absolute segment
Move to a common segment

Eject; set page height
Enable titling, set line

417

418

A relocatable program may have an absolute segment. ASEG is used to force the
LINK command to place that code at its assembled origin in storage. The main use for the
absolute segment is to establish addresses fixed by the operating system, for instance:

aseg
org 0 : set abs. location counter

boot equ 5 warmstart jump at abs. 000,h
org 5

bdos equ $; bdos jump at abs. 0005h
cseg ! relocatable code begins

Then a call to BDOS in the relocatable segment will be assembled with an absolute
target address of 0005h.

Absolute segments containing object code must be linked with care. If two routines
assemble through the same absolute addresses, the code of one will overlay that of the
other when they are linked.

A common segment is a portion of storage that, at execution time, will be used in
common by several separately assembled routines. Each routine contains its own
definition of the common segment. The assembler notes the size of the area and passes
that information in the object file. The LINK command allocates space for common
segments following the code segments, and supplies the absolute addresses needed to
reference it.

Common segments can be a fruitful source of bugs. To ensure that all routines use
the same definition of common space, put the defining statements (DS, EQU. and
labeled ORG statements) in a macro library.

The initialization of a common segment must be handled carefully. Object code
assembled in a common segment is placed in the object file; the LINK command places
that code in the common area. If two routines both assemble initial values for a common
segment, the initial data from the second one linked will overlay that from the first one
linked.

{ label } ASEG

The assembler begins to place object code in the absolute segment of the program.
Until a CSEG, DSEG, or COMMON directive is seen, all assembly addresses are
absolute addresses that cannot be changed when the program is linked.

The optional label receives the absolute address of the next byte in the absolute
segment.

COMMON

(RMAC)

COMMON /name/

The assembler begins to place object code in blank common or the named common
segment. Until the next ASEG, CSEG, or DSEG directive is seen all assembly
addresses will be relocatable, to be established when the LINK command locates this
common segment.

Each named common segment is distinct, and has its own location counter. Each
will occupy a distinct area of storage at execution time.

419

420

Most or all of the instructions and constants of a relocatable program will be placed
in the code segment. The address of the relocatable segment is established by the LINK
command. The relocatable segment of the first module linked will be placed at the start
of the Transient Program Area; any other code segments will follow it.

A label equated to a relocatable address is called, reasonably, a relocatable label.
Such labels may be used in expressions in only these ways:

relocatable label + constant
relocatable label — constant
relocatable label +/— relocatable label

The last form, adding or subtracting two relocatable labels, is only allowed when the two
labels are defined in the same segment. These restrictions are needed because only in
these cases can the assembler know the result of the operation. The result of any other
arithmetic or Boolean operation on a relocatable label cannot be known until the program
has been linked.

The most frequent use of DB is to assemble character constants for messages and
the like:

makemsg db 'Can’t create output file!''$’
The directive will accept an expression in any operand:
comsize db ((program$end-0100h)+127) shr 7

If program$end is the label on the END directive, that statement will assemble a 1-byte
count of the number of records (128-byte units) in the program’s .COM file. (That
expression, however, is not a relocatable one, and will cause an error if used with
RMAC.)

DB can be used at any point in the program, even within executable code:

Ixi d,to
Ixi h,from
db Oedh,0b0h ; Z80 LDIR instruction

{ label} CSEG

The assembler begins to place object code in the code, or relocatable, segment of
the program. Until an ASEG, DSEG, or COMMON directive is seen all addresses used
will be relocatable, to be established when the LINK command locates the code segment.

The optional label receives the relative address of the next byte in the code segment.

DB
(ASM, MAC,

RMAC)

{ label } DB operand{,operand...}

The values of the operands are assembled as 1-byte values in consecutive locations,

Each operand must evaluate to an 8-bit value; if more than 8 bits are needed to
contain it, the assembler reports a D error.

An operand that is only a character constant may contain as many as 64 characters.
Each character is treated as a separate operand.

The optional label receives the address of the first byte assembled.

421

422

DS is most often used to set aside buffer space within the program:

buflen equ 128
buffer ds buflen

The contents of the reserved space at execution time can’t be predicted. Quite likely
they will consist of whatever garbage was in storage at those addresses at the time the
LOAD or LINK command built the .COM file. The space can be given a known value by
loading the program under DDT and using its Fill subcommand to initialize the space.

Programs that will be converted to page relocatable form (.PRL, .SPR) under
MP/M should never end with a DS directive. The DS directive produces no output in the
HEX file. MP/M’s GENMOD command assumes that the storage requirement of a
program is its length through the last byte defined by a.HEX record. Inserta DB O at the
end of the program to force generation of a .HEX record at the true end address.

The buffers and variables of a relocatable program either may be placed in its code
segment with its instructions or isolated in its data segment. It is a good practice to put all
modifiable fields in the data segment. The address of the data segment is established by
the LINK command. The data segments of all modules linked are placed at the end of the
linked program following the code and common segments.

A label equated to a relocatable address is called, reasonably, a relocatable label.
Such labels may be used in expressions in only these ways:

relocatable label + constant
relocatable label — constant
relocatable label +/- relocatable label

The last form, adding or subtracting two relocatable labels, is only allowed when the two
labels are defined in the same segment. These restrictions are needed because only in
these cases can the assembler know the result of the operation. The result of any other
arithmetic or Boolean operation on a relocatable label cannot be known until the program
has been linked.

{ label } DS operand

The value of the operand is added to the location counter, causing the assembler to
skip over part of the program space. The contents of the addresses skipped over are not
defined.

The optional label receives the address of the first byte skipped.

{ label} DSEG

The assembler begins placing object code in the data segment of the program. Until
the next ASEG, CSEG, or COMMON directive is seen, all assembly addresses will be
relocatable, to be established when the LINK command locates the data segment.

The optional label receives the relative address of the next byte to be assembled in
the data segment.

DS
(ASM, MAC,

RMAC)

423

DW is most often used to assemble address constants and 16-bit numeric values:

buffstart dw buffer
buffend dw buffer+bufflen
bytemask dw -256

It is also convenient for initializing storage, since it requires half the number of
operands of DB:

ff equ —1
bitmap dw ff ffff,if

The last example assembles 8 bytes of FFh.

ELSE is used in an IF ... ELSE ... ENDIF group to select an alternate section of
input text for assembly based on some condition. See the IF directive.

424

{ label } DW operand{,operand... }

The values of the operands are assembled as two-byte values in consecutive
locations. Normally each value is stored with its least significant 8 bits first and its most
significant 8 bits second, according to the Intel convention for word values.

Signed numbers are extended on the left to 16 bits with their sign bit value.
Unsigned values are extended on the left to 16 bits with 0 bits.

Operands that are character constants may have no more than two characters. A
two-character constant is treated differently from other operands. The first character
given is stored in the first byte of the word, and the second in the second.

The optional label receives the address of the first byte assembled.

{ label } ELSE

The true scope of the enclosing IF directive is ended. If the assembler is skipping
input text because the IF was false, it begins processing text when ELSE is seen. If the
assembler was processing text because the IF was true, it skips text from the ELSE to the
matching ENDIF,

The optional label (whose use is not recommended) will be defined and given the
address of the next byte assembled, but only if the assembler was processing input text
following a true IF. Otherwise it will be ignored.

If there is no matching IF directive, the assembler reports a B error.

DW .
(ASM, MAC,

RMAC)

425

The entry address has little use under CP/M. If the .HEX file is loaded under DDT,
the debugger will set the initial program counter contents from the entry address.
However, commands loaded into the transient program area are always entered at
0100h. It is conventional to code END 0100H to document this fact.

The value of the optional label may be used elsewhere in the program to compute
the size of the program. See the DB directive for an example of such a computation.

Elaborate programs sometimes use the address of the end of the program as the base
for dynamically established buffer or table space. This is a CP/M technique that can only
be used under MP/M by a program that runs as a .COM file in an absolute TPA. The
technique should be avoided in relocatable and page relocatable programs under MP/M.

ENDIF terminates its IF ... ENDIF or IF ... ELSE ... ENDIF group. See the IF
directive.

The ENDM directive of MAC and RMAC terminates all open IFs, so ENDIF may
be omitted preceding an ENDM directive.

426

END
(ASM, MAC,
RMAC)

{ label } END { operand }

The assembler stops reading the input file; following statements will be ignored. If
given, the value of the operand will be passed in the .HEX file as the entry point address
of the program.

The optional label receives the value of the location counter (the address of the next
byte that would have been assembled).

ENDIF

(ASM, MAC,
RMAC)

{ label } ENDIF

The scope of the innermost IF directive is ended. If no IF directive is active, ASM
ignores the statement; MAC and RMAC report a B error.

The optional label (whose use is not recommended) receives the address of the next
byte to be assembled, but only if the assembler is processing input when it finds the
ENDIF. If the assembler is skipping input, the label is ignored and is not defined.

427

See the MACRO, IRP, IRPC, and REPT directives for examples of the use of
ENDM.

The use of a single directive to delimit the bodies begun with four such various
directives might appear at first to be inconsistent. However, the statements bounded by
IRP, IRPC, or REPT are in fact macro definitions exactly as is a group of statements
headed by MACRO. The assembler handles all such groups in the same way. The
repeating groups differ in that their definitions are temporary and can be expanded only
at the point where they are coded.

The EQU directive is used to give meaningful names to values and so make the
program more understandable and easier to modify. There are a number of ways to apply
EQU toward these goals:

numrecs equ 16

buffsize egqu numrecs*128
buffer ds buffsize

bufflast equ buffer+buffsize-1

A single EQU defines the size of a file buffer in standard records (the units most relevant
to a buffer). The remaining statements define the buffer itself, but all depend on
numrecs. Changing only its definition changes everything about the buffer.

false equ O

true equ not false

printer$support equ true

do$formfeed equ term$ADMS3 or printer§support

False and true are conventional names for use with names that will be used in IF
directives. As the last statement shows, Boolean conditions can be given meaningful —
428 names in EQUs at the top of the program, simplifying later IFs.

{ label} ENDM

The body of the current MACRO, IRP, IRPC, or REPT directive is closed. All IF
directives begun within that body and not yet ended are also closed. If there is no open
MACRO or repeating structure, the assembler reports a B error.

Where ENDM closes a macro definition, macro expansion stops. Where it closes a
repeating structure the assembler either returns to the top of the body or continues,
depending on the repetition control.

The optional label (whose use is not recommended) receives the value of the next
byte to be assembled. If the label is processed more than once in a repeating structure, the
assembler reports a P error.

label EQU operand

The operand is evaluated and its value is assigned to the label.

Any labels that appear in the operand expression must have been defined prior to
this point in the program. If any have not, a U or P error is reported.

If the statement label is omitted, the assembler reports an S error.

EQU
(ASM, MAC,

RMAC)

429

430

EXITM is used to end macro expansion early. In the case of a macro definition it
might be used in place of a level of IF nesting, to simplify the macro:

if nul ¶meter
exitm

It might be used in an error check, as here where a deliberate assembly error is used
to deliver a message:

if 255 It &number
equ 'number cannot exceed 255’
exitm

Repeating structures are also macros, and EXITM can be used to terminate repeti-
tion early. Here it is applied to prevent assembling characters beyond the eighth in a
filename:

length set 8
irpc f,afile
db '&F’; filename letter
length set length—1

if length It O
exitm ; ignore extra letters
endif
endm

EXTRN identifies the addresses used in this program that will be provided in other
assemblies. External labels may be used in expressions in only certain ways:

external label + constant
external label — constant

This restriction is necessary because the assembler is allowed to pass a fixed offset
value for any use of an external label, but it cannot know the value of the label at
assembly time.

External labels may be used as operands in any segment. For example, an external
address could be assembled into an absolute segment instruction or initialized into a
common segment with DW.

{ label } EXITM

The assembler stops expanding the current macro definition and continues assem-
bly with the statement following the macro call.

EXITM may be used to stop the processing of an IRP, IRPC, or REPT body. When
EXITM is found in one of those structures, the assembler continues processing with the
statement following the ENDM that ends the structure.

If no MACRO or repeating structure is active, the assembler reports a B error.

The optional label (whose use is not recommended) receives the address of the next
byte to be assembled,

EXTRN labek,label...}

Each label given is identified as being defined external to this assembly. The
assembler records the labels and their points of use in the object file. Other programs,
assembled separately, will supply meanings for the names through their use of the
PUBLIC directive; the LINK program will copy their final addresses into the program.

External labels may be as long as desired, but only their first six characters are
recorded in the object file.

431

432

The IF directive is used to control the contents of the program on the basis of some
condition. The condition is usually expressed as a Boolean combination of labels that
have earlier been equated to true (nonzero) and false (zero) values.

A U diagnostic signals that a label in the operand is not defined anywhere in the
program. The undefined label is treated as if it had a value of zero. A P diagnostic signals
a label that is defined true following the IF, causing the IF to assemble differently on the
assembler’s second pass.

With ASM the IF can be used only to skip or not skip parts of the program:

if printer$support
... printer output code ...
endif

With MAC the IF ... ELSE ... ENDIF combination can be used to choose between
alternates:

msgl if not expertmode
db 'Enter date as MM/DD/YY"'
else
do 'M/D/Y
endif

Note the use of indentation to make the logic of conditional assembly clearer. With MAC
the operator NUL is often used in IF expressions. See the REPT and IRP directives for
examples.

IRP is used to automate the assembly of sequences that are repetitive in shape but
varied in content. In this example IRP is used to construct a branch table like the BIOS
entry table. A null item signals an unused entry to the table:

jumptab irp target,<sub1,<> sub3,sub4>
if nul &target
ret ! nop ! nop
else
jmp target
endif
endm

In MAC version 2.0 if the list is empty (given as <<>) the body is not processed at
all. This is incompatible with the Intel assembler, which processes the body once,
replacing the dummy name with a null value. MAC version 2.0 does peculiar things
when a null item is given as two adjacent commas, as in <one,,three>. A null item
given as an empty list as in <one,<>> three> is processed correctly. These problems
may not exist in RMAC or in later versions of MAC.

{ label } IF operand

The operand is evaluated. If the result is false (zero), the assembler skips input text
until it finds an ENDIF or ELSE directive. If the result is true (not zero), the assembler
continues processing input. If it then finds an ELSE directive, it begins skipping input
until an ENDIF is seen.

The ASM assembler does not recognize ELSE.

Labels in the operand expression must be defined prior to the IF. If any are not, the
assembler reports a U or P error.

The optional label receives the address of the next byte to be assembled.

{ label } IRP dummy,<item,item...>

IRP takes two operands. The first is dummy, a name containing no interspersed
dollar signs. The second is a list of irems. The list is enclosed in angle brackets < and >,
The elements of the list are simply strings of characters, any characters at all. Each item
is separated from the next by a comma. If an item contains spaces or special characters, it
should be enclosed in angle brackets itself.

The assembler processes the body of statements between IRP and a matching
ENDM directive once for each item in the list. On each pass over the body all
occurrences of the name dummy are replaced by the current item.

I=
(ASM, MAC,

RMAC)

433

434

IRPC is used to automate the assembly of repetitious declarations. Within macros it
is often used to count the length of character strings. Here IRPC and REPT are used to
assemble a filename in an FCB, padding the name with blanks to eight characters:

fcb: do 0 ; drivecode
length set 8
irpc f,afile
db '&F' ; filename character
length set length—1
endm
rept length
db ' ' ; padding character
endm

Because IRPC always makes one pass over the body of statements it will not give a
reliable count of the length of a string that might be null. The IF NUL directive can be
used to avoid this problem.

LOCAL provides the programmer with a supply of labels, each guaranteed unique
and not in use in the main program. A common use of LOCAL is to provide a name for a
constant and a branch target at its end:

msg macro text
local string,over

Ixi d,string

mvi c,9

call bdos

jmp over
string db '&TEXT','$’
over endm

Each time the macro msg is called, the assembler will generate new labels to be
substituted for string and over. If the macro is called a dozen times, 24 different labels
will be produced.

Normally the assembler does not list labels commencing with ?? in the symbol
table. If these labels are needed (for instance, if they are to be used as breakpoints under
SID), specify the assembler parameter +Q.

{ label } IRPC dummy,item

IRPC takes two operands. The first, dummy, is a name with no interspersed dollar
signs. The second, item, is any sequence of characters at all, terminated by a space, tab,
or comment. If irem contains delimiters, it should be enclosed in angle brackets
(<item=>).

The assembler processes the body of statements between IRPC and a matching
ENDM once for each character in item. On each pass all occurrences of dummy are
replaced by the current character from irem.

If item is null (given as <> or as two adjacent apostrophes), the assembler makes
one pass, replacing dummy with the null string.

The optional label receives the address of the first byte generated.

LOCAL name{,name...}

LOCAL may be used only within the body of a macro definition (including bodies
defined by REPT, IRP, and IRPC). It accepts any number of operands name each of
which is a name with no interspersed dollar signs.

During expansion of the macro the assembler replaces any occurrence of a name
with a generated label unique to that name. The labels have the form ??nnnn where the
four decimal digits nnnn begin at 0001 and advance with each name in each LOCAL
statement processed.

435

436

As the assembler reads the contents of the macro library it discards comment-only
lines. Macro definitions are stored. SET and EQU directives are performed.

Normally only the SET and EQU lines are written in the listing. Specify the +L
assembly parameter to have all lines displayed.

A macro may contain another macro definition; on this hinges some programming
tricks. The ability is mainly used to solve the first-time problem: to make a macro
assemble one way the first time it is called, and another way all the other times. Define
the macro in its first-time form but embed a redefinition of the same macro within it. The
embedded definition replaces the original one when the macro is called the first time.

The assembler will recognize a macro call in the label or operand field of a
statement as easily as in the normal operation field. If a macro attempts to generate a
label that is the same as its own name, that is,

cosub macro ; assemble a subroutine
cosub equ $; entry to subroutine

the assembler will see the generated label as a call to the macro that generated it. Aftera
very long time the nested macro expansions will fill storage and the assembler will either
abort or report an M error.

{ label } MACLIB filename

The contents of the file named filename.LIB replace the MACLIB statement; the
assembler processes them as if they had been part of the original program.

The assembler looks for filename.LIB on the default drive unless the Ld parameter
has been used to specify a different drive.

If a statement in the macro library changes the location counter (that is, if it is an
ORG, DB, DS, DW, or an instruction statement), a P error will occur. The library
should contain only SET and EQU directives, MACRO ... ENDM groups, and
comments.

label MACRO name{,name...}

The body of statements between the MACRO directive and the matching ENDM is
stored as a macro definition under the name label (which may not have interspersed
dollar signs). If no matching ENDM can be found, the assembler reports a B error.

The macro body may comprise any sequence of assembler statements, including
IF, IRP, IRPC, and REPT structures. Macro definitions may be nested within the
current macro’s body. Such nested definitions are not processed at the time the enclosing
macro is stored. They will be recognized and stored when the enclosing macro is
invoked.

When the word label appears in the program text, the assembler replaces it with the
body of the macro. Operands following label in the source are matched to the names.
Wherever a name, delimited by spaces, commas, or ampersands, appears in the body of
the definition, it is replaced by the matching operand from the macro call. See the
Summary of Macro Substitution in MAC earlier in this section.

MACLIB

(MAC,
RMAC)

437

The name of the object program is recorded with the program in object file. The
name is noted in a library created by the LIB command, and can be given as a LINK
parameter to cause the program to be included at link time.

ORG is used at the beginning of a program to set the program’s assembled origin. —
CP/M programs conventionally begin with statements like this:

tpa equ 0100h
start org tpa

Within a macro it is convenient to assemble a default or fill value and then ORG

backward to overlay the fill with data, as in this method of assembling an FCB with
optional filename:

fcbfn db " ; filename — blanks
fcbft db ' ; filetype — blanks
if not nul filename
org fcbfn
db '&FILENAME’ ; filename — blank padded
org fch+36
endif

That technique should be avoided in MP/M where the GENMOD command may
not be able to handle overlapping load addresses. See the IRPC directive for an different
example of padding a filename with blanks.

The R parameter of MAC causes 0100h to be subtracted from the operand of all
ORGs. The resulting .HEX file, concatenated with a normal one, forms the input to

GENMOD to create a page relocatable program. -
438

NAME ’name’

The assembler notes name in the object file as the name of this program.
The name given will be truncated to six characters, as are all external symbols.
If no NAME directive appears in a program, the filename of the source file is used.

{ label } ORG operand

The assembler’s location counter is set to the value of the operand, causing
subsequent bytes to be assembled at a different address.

The location counter may be given any 16-bit value, including one that causes the
assembled code to overlap addresses already used.

The optional label receives the value of the operand (the address of the next byte to
be assembled).

NAME

(RMAC)

ORG
(ASM, MAC,

RMAC)

439

440

The first form is used to force a page-eject in order to make the listing more
readable. Blocks of declarations, important subroutines, and important phases of pro-
cessing stand out when they are preceded by PAGE directives.

Titling aside, a PAGE adds only 1 byte (an ASCII FF character) to the size of the
listing file. When the listing is typed at the console, the FF may be displayed as a space or
it may cause the screen to be cleared, depending on the type of terminal.

The assembler’s line counter is initially set to 56. The two lines written at the top of
each page when titling is in effect are not counted toward the limit. When planning the
listing, it is best to specify two less than the actual capacity of the paper so that titling can
be added later.

PUBLIC is used to identify the parts of the program that are available to other
linked routines: entry points to public subroutines and the names of constants that may be
referenced from other programs.

The assembler records each name, with the address to which it refers, in the object
file. The LINK command notes the names. Where another program specified one of the
names in an EXTRN directive, LINK supplies the actual address defined in this program.

{ label } PAGE
{ label } PAGE operand

In the first form of the directive the assembler writes a formfeed to the listing file.
The formfeed follows the line containing the PAGE, which thus appears as the last line
on its page. If the TITLE directive has been used, the assembler writes the title and a
blank line as well.

In the second form the assembler sets the value of the operand as the limit of the
number of lines on a page of listing. If the operand evaluates to zero, automatic
pagination is disabled; the only pagination done will be in response to the PAGE
directive in its first form.

When the operand is not zero, it takes effect at once. If there are already that many
lines or more on the current page, the PAGE directive itself will start on a new page.

The optional label in both cases receives the address of the next byte to be
assembled.

PUBLIC label,label... }

Each label given is identified as being public. The assembler records the names and
addresses of the labels in the object file. Other programs, assembled separately, may
refer to those labels; the LINK command will supply their addresses to the other
programs.

Public labels must have address values, whether absolute or relocatable. They may
not be equated to a constant or an offset, or defined by an EXTRN directive.

Public labels may be as long as desired, but only their first six characters are
recorded in the object file.

PUBLIC

(RMAC)

441

442

The purpose of REPT is to automate the assembly of repetitive constants or code
sequences. This group assembles 16 word constants, each a different power of two:

powerof2 set 1
rept 16
dw powerof2
powerof2 set powerof2 shi 1
endm

This example constructs a table of ASCII characters in which control characters
appear as nulls (00h). The listing is turned off to suppress the bulky output.

table org ($+127) and 0ff80h
$—print
rept 128
asciival set (low $) and 7th
if (asciival It 20h) or (asciival eq 7fh)
db 00h ; control char
else
db asciival ; printable char
endif
endm
$+print

In MAC version 2, if the operand evaluates to zero the REPT body is not processed
at all, an incompatibility with the Intel assembler, which always processes the body at
least once regardless. This may not be true of RMAC or of later versions of MAC.

SET, like EQU, associates a name with a value. Unlike EQU, a name defined with
SET may be redefined later to have another value. This ability finds little use in ASM. In
MAC the SET statement is frequently used within macros as a way of assigning values to
macro temporary variables and control variables for macro loops. See the REPT and
IRPC directives for examples.

{ label } REPT operand

The assembler processes the body of statements between the REPT and a matching
ENDM directive some number of times, generating code repetitively. The number of
repetitions is set by the value of the operand.

The operand is evaluated only once, when the REPT is first scanned. Labels in the
operand expression must be defined prior to the REPT statement; if any have not, the
assembler reports a U or P error.

The optional label receives the address of the first byte of code generated.

SET
(ASM, MAC

RMAC)

label SET operand

The value of the operand is assigned to the label. The label’s value may subsequent-
ly be changed by another SET statement.

All labels used in the operand must be defined prior to the SET: if any are not, the
assembler reports a U or P error. If the label appears as the label of another type of
statement, the assembler reports a P error.

443

444

The TITLE directive does two things. It enables titling of the listing, and it sets the
descriptive constant to appear in the title. Once titling has been enabled it cannot be shut
off again.

Titling causes the assembler to write two more lines to each page than are called for
by the line counter controlled by the PAGE directive. The blank line after the title line is
produced by a single extra ASCII linefeed: it is not a complete line of spaces.

It would be nice to be able to change the title constant partway through an assembly,
but the TITLE directive does not allow this. The title constant is saved during the
assembler’s first pass and used during its second pass. The last TITLE statement seen
determines the title constant for the entire listing.

{ label } TITLE ’title constant’

Titling of the listing is enabled. Following each page eject of the listing file the
assembler will write a title line and a blank line to the listing. The title line identifies the
assembler and its version, gives the page number, and includes the title constant.

The optional label receives the address of the next byte to be assembled.

445

Req#

104
105
106

47
59

Topical Summary of
Selected BDOS Services

cpm-2
mpm- |
cpm-86
mpm-2
L] Page Service Performed
System Information and Control

X - X - 463 Get current IOBYTE

X - X 465 Set IOBYTE

X X X X 469 Get system identification

X % X X 491 Get disk parameters

X X % X 493 Get/ set user code

- - - X 507 Set BDOS error mode

= = - 511 Call BIOS entry

- - - X 525 Set date and time

- - - X 527 Get date and time

- - - X 527 Set default password

Program Control

X X X X 457 Terminate program

- - - X 509 Chain to command

- - X - 521 Load program
Console Input and Output

X X X X 457 Console input byte

X X X X 459 Console output byte

X X X X 465 Console output string

X X X X 467 Console input line

X X X X 467 Console status check

error key

Argument

none
E = IOBYTE
none
none

- E = flag/code

E = flag
DX—parameters
DE—date,time
DE—date,time
DE— password

(86: DL = flag)
buffer=command
DX—FCB

none

E = byte
DE—string
DE—buffer
none

449

450

Req#

= =B W T S]

15
16
17
18
19
22
23
30
32
41
42
43

101
102
103

20
21
33
34
40
35
36
44
45
26
51
52

cpm-2

P A A

E -

mpm- |

P

cpm-86

E - A

- o

EL

E -]

mpm-2

l

- - A - o - - - - -

R I R

Page

459
461
461
463
465

File Manipulation and Control

471
473
475
477
477
483
483
491
493
503
505
505
507
523
523
525

479
481
493
495
501
495
497
507
507
487
513
513

Service Performed

Other Serial Input and Output

Reader input byte
Punch output byte
List output byte

Get current IOBYTE
Set IOBYTE

Open existing file
Close output file
Search for first file
Search for next file
Delete file

Make new file
Rename file

Set file attributes
Get/set user code
Test and write record
Lock record
Unlock record

Set record count
Get directory data
Read XFCB

Write XFCB

File Input and Output

Sequential read
Sequential write
Direct access read
Direct access write
Direct write, zero fill
Get file end address
Get direct address

Set record count

Set BDOS error mode
Set file buffer address

Set file buffer seg. base

Get file buffer address

error key

l Argument

- none
- E = byte
- E = byte
- none

- E = IOBYTE

DE—FCB
DE—FCB
DE—FCB
DE—FCB
DE—FCB
DE—FCB
DE—FCB
DE—FCB
E = flag/code
DE—FCB
DE—FCB
DE—FCB
E = count
- E = drive
d DE—FCB
d DE—FCB

== =0 AAAAOQOOo Ao

i

r DE—FCB
w DE—FCB
1 DE—FCB
i DE—FCB
i DE—FCB
f DE—FCB
f DE—FCB
- E = count
- E = flag

- DE—buffer
DX = base adr.
none

1

Req#

17
18
19
22
23
30
100
101
102
103

13
14
24
25
27
28
29
31
32
37
38
39
46
48
100
101
102

cpm-2

e

Pl I = T

E R

]

I R R - - -

gpm-86

- -

Eo T A T -]

mpm- |

mpm-2

Eo - I - - -

I B O R e I B

error key
Page Service Performed l Argument
Directory Operations
475 Search for first file d DE—FCB
471 Search for next file d DE—FCB
477 Delete file d DE—FCB
483 Make new file d DE—FCB
483 Rename file d DE—FCB
491 Set file attributes d DE—FCB
521 Set directory label d DE—FCB
523 Get directory data - E = drive
523 Read XFCB d DE—FCB
525 Write XFCB d DE—FCB

Disk System Information and Control

469 Reset all drives m
471 Select default drive -
485 Get active drive map -
485 Get default drive number -
487 Get allocation vector -
489 Protect drive -
489 Get read-only drive map -
491 Get disk parameters -
493 Get/ set user code -
497 Reset drive m
499 Access drive 5

499 Free drive -
509 Get disk free space f
511 Flush disk buffers f
521 Set directory label d
523 Get directory data -
523 Read XFCB d

none

E = drive

none

none

none

none

none

none

E = flag/code
DE = drive map
DE = drive map
DE = drive map
E = drive

none

DE—FCB

E = drive
DE—FCB

451

452

Req#

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Numeric Index of BDOS Services

cpm-2

il
=il

P R R RV R S - - TSI - B I - - I e

mpm-1

E -

1

W Dd b b4 B4 B4 M M B B4 M 3 O oMo M oMo o Mo D0 M

cpm-86

O R B T I R - R T - - - - - - I -]

mpm-2

l Page

= o om

'

R R R - R R R - R R R R

457
457
459
459
461
461
463
465
465
467
467
469
469
471
471
473
475
477
477
479
481
483
483
485
485
487
487
489
489
491
491
493
493

Service Performed

Terminate program
Console input byte
Console output byte
Reader input byte
Punch output byte
List output byte

Get current IOBYTE
Set IOBYTE

Console output string
Console input line
Console status check
Get system identification
Reset all drives
Select default drive
Open existing file
Close output file
Search for first file
Search for next file
Delete file

Sequential read
Sequential write
Make new file
Rename file

Get active drive map
Get default drive number
Set file buffer address
Get allocation vector
Protect drive

Get read-only drive map
Set file attributes

Get disk parameters
Get/ set user code
Direct access read

error key

cafrocoens -3

Argument

(86: DL = flag)
none

E = byte
none

E = byte
E = byte
none

E = IOBYTE
DE—sstring
DE—buffer
none

none

none

E = drive
DE—FCB
DE—FCB
DE—FCB
DE—FCB
DE—FCB
DE—FCB
DE—FCB
DE—FCB
DE—FCB

- none

none
DE—buffer
none

none

none
DE—FCB
none

E = flag/code
DE—FCB

cpm-2

mpm-1
cpm-86
mpm-2
Req# y l Page
34 X X X X 495
35 X X X X 495
36 X X X X 497
37 e O 497
38 - X - X 499
39 - X - X 499
40 X X X X 501
41 - - - X 503
42 - - = X 505
43 - - - X 505
44 : - - X 507
45 - - X 507
46 - - X 509
47 - - X 509
48 - - X 511
50 - X - 511
51 - X - 513
52 - X - 513
53 - X - 515
54 - X - 515
55 - X - 517
56 - X - 517
57 - X - 519
58 - X - 519
59 - X - 521
100 - - X 521
101 - - X 523
102 - - X 523
103 - - X 525
104 - - - X 525
105 - - - X 527
106 T 527

Service Performed

Direct access write
Get file end address
Get direct address
Reset drive

Access drive

Free drive

Direct write, zero fill
Test and write record
Lock record

Unlock record

Set record count

Set BDOS error mode
Get disk free space
Chain to command
Flush disk buffers
Call BIOS entry

Set file buffer seg. base
Get file buffer address
Max. relocatable storage
Max. absolute storage
Relocatable storage
Absolute storage
Release allocated storage
Release all storage
Load program

Set directory label
Get directory data
Read XFCB

Write XFCB

Set date and time

Get date and time

Set default password

error key

'

i
f
f
m
f
m

i
i
i
i

e T R

[T = PO T = T

Argument

DE—FCB
DE—FCB
DE—FCB

DE = drive map
DE = drive map
DE = drive map
DE—FCB
DE—FCB
DE—FCB
DE—FCB

E = count

E = flag

E = drive
buffer=command
none
DX—parameters
DX = base adr.
none

DX—MCB
DX—MCB
DX—MCB
DX—MCB
DX—MCB
DX—MCB
DX—FCB
DE—FCB

E = drive
DE—FCB
DE—FCB
DE—date,time

- DE—date.time

DE—password

453

Summary of BDOS Error Codes

The error code groups shown here are keyed to the indices on the previous pages.
To find the errors returned by a given service, look it up in the Numerical Index of BDOS
Services, then look here under its error key. A code marked with “+” occurs in MP/M 2
only.
Key Code Meaning
c A = 00h No data available.
A nonzero A byte is ready.
f A = 00h Success.
#A = FFh Failure (returned only in MP/M 2; an extended code is
returned in register H).
d A = 00h Success (directory code 0)
A = 01lh Success (directory code 1)
A = 02h Success (directory code 2)
A = 03h Success (directory code 3)
A = FFh File not found or error (MP/M 2: an extended code may be —
returned in register H.)
i A = 00h Success.
*A = FFh Physical error, register H contains extended code.
A = 0lh Attempt to read unallocated record.
A = 02h Disk full, no space for a new allocation block.
A = 03h Cannot find current FCB to update it.
A = 04h Attempt to read in unallocated extent.
A = 05h Directory full, no space for new extent entry.
A = 06h Direct address larger than allowed.
#A = 07h Record mismatch in Test and Write (41).
#A = 08h Requested record is locked.
*A = 09h FCB was found invalid on a prior service.
#*A = 0Ah FCB never opened, or corrupted (checksum error).
*A = 0Bh Unlocked file’s FCB out of step with directory.
#A = 0Ch Too many locked records for one process.
#A = ODh Given File ID is not in list of unlocked files.
«A = OEh Too many locked records in the system.
m In CP/M no code is returned.

In MP/M, A = 00h signals success, A = FFh signals failure. —
454

——

Key Code

Meaning

r A = 00h
A = FFh
#*A = 08h
*A = 09h
*A = 0Ah
w A = 00h
A = 01lh
A = 02h
*A = 08h
*A = 09h
«A = 0Ah
*A = FFh

Success.

End of file (MP/M 2: see register H).
Requested record is locked.

FCB found invalid on previous service.
FCB hasn’t been opened, or is corrupted.

Success.

No directory space for new extent.

Disk full, no data space for a new allocation block.
Requested record is locked.

FCB found invalid on previous service.

FCB hasn’t been opened, or is corrupted.

Physical error, see register H.

In MP/M 2 register H contains return code information. If multiple records are in
use and not all records can be moved, the most significant 4 bits of register H contain a
count of records successfully transferred.

When enabled by Set BDOS Error Mode (45), errors that would have cancelled the
program are returned by setting A = FFh and setting an extended code in the low 4 bits of
register H as follows:

H = 00h
H = 0lh
H = 02h
H = 03h
H = 04h
H = 05h
H = 06h
H = 07h
H = 08h
H = 0%h
H = 0Ah
H = 0Bh

A = FFh means “end of file” or “file not found.”
Permanent disk read or write error.

Attempt to write to a read-only drive.

Attempt to write to a read-only file.

Attempt to select an invalid drive-letter.

File open by another process in locked or read-only mode.
FCB can’t be validated during a Close (16).

Password error.

File named in Make (22) or Rename (23) already exists.
Fileref in FCB is ambiguous; an explicit name is required.
This process has its limit of open files.

The BDOS has recorded its maximum of locked, open files.

455

456

In both CP/M and MP/M service 0 duplicates the results of a JMP 00h.

Output files that are not closed will have incomplete allocation data.

In CP/M the disk in drive A must be bootable or a disk error or system hang will
follow. This is not true of CP/M-86 or MP/M, which do not reload the system.

In CP/M-86 service 0 is the only way for a program to terminate; there is no jump
vector at location 00h in the data segment. CP/M-86 takes a byte operand in the DL
register: 00h requests a complete termination as for CP/M and MP/M; 01h merely ends
the program, leaving the program image and its memory allocation intact. The latter
option is for programs that will be driven by events (I/O or software interrupts) rather
than executing sequentially. After initializing itself under the guise of a command, the
event-driven program can return control to the CCP, its subsequent execution being
triggered by interrupts.

Related requests: none.

The use of direct cursor addressing can invalidate the BDOS’s knowledge of the
cursor position, causing it to return the wrong number of spaces when a tab character is
received.

When a line of input is needed, it is better for a number of reasons to use Console
Input Line (10).

Related requests: Direct Console /0 (6), Get Console Line (10), Console Status (11).

Terminate Program

BC: 00h

DE:

HL

The calling program is aborted and control returns to the command level of the
system.

Under CP/M a warm start is done to refresh the CCP and BDOS code. The disk
system is reset; that is, read-only disks are made read—write and directory check
information is discarded.

Under MP/M all resources—storage segments, reserved drives, locked files and
records, queues, and mutual exclusions—owned by the calling process are released. The
disk system is not reset nor is the Monitor reloaded.

Console Input Byte

BC 01h

DE:

HL:

A byte from the current console device is returned in register A. The byte is echoed
to the terminal. If no byte is ready at the time the call is made, the calling program is
suspended until a byte becomes available.

The BDOS does not act on control characters received through service 1. Control-c,
control-s, control-p are passed through to the program. If a tab character is received, the
BDOS notes the number of spaces represented based on its knowledge of the cursor
~ position. It echoes that many spaces (not a tab) to the console. The tab is returned to the
program, however.

457

When controlling a special console device for which bit 7 is significant, use BDOS]
service 6.

The use of direct cursor addressing may invalidate the BDOS's knowledge of the
cursor position, causing it to expand tabs incorrectly. Write tabs only when it is sure that
only normal characters have been sent since the last CR.

MP{M: When writing a line, Console Output String (9) is more efficient than using
this service in a loop.

Related requests: Direct Console I/O (6), Console String (9).

The RDR: logical device represents a source of ASCII input. It can be assigned to
different physical devices depending on the BIOSs support of the IOBYTE.

MP/M: All serial devices are called consoles. A single process has access to only
one serial device, which is its logical console. If a command is to drive a second serial
input device in addition to the user terminal, the command must attach a second process,
giving it the auxiliary input device as its “console.” The two processes can then
communicate through a queue.

Related request: Punch output (4). =

458

Console Output Byte

A

BC: 02h
DE: byte
HL:

Bit 7 of the byte in register E (DL in CP/M-86) is set to zero and the resulting byte is
sent to the current console device,

If the BDOS has seen a control-s, it waits for another character to be typed before
completing the output and returning; the calling program is suspended during this time.
If the console-copy flag is set, the byte is copied to the current list device.

If the byte is a tab (09h), the BDOS writes some number of spaces instead, based on
its knowledge of the position of the cursor.

Reader Input (CP/M only)

BC: 03h

DE:

HL:

The next byte from the device currently assigned to RDR: is returned in register A.
All 8 bits are returned. The program is suspended until a byte is ready.
MP/M: The service request is honored, but it returns input from the current console
for the process rather than from a reader. 459

460

The PUN: logical device represents a receiver of ASCII data. It may be assigned to
different physical devices, depending on the BIOS’s support of the IOBYTE.

MP/M: All serial devices are called consoles. A single process has access to only
one serial device, which is its logical console. If a command is to drive a second serial
output device in addition to the user terminal, the command must attach a second
process, giving it the auxiliary output device as its console. The two processes can then
communicate through a queue.

Related request: Reader Input (3).

If the BIOS supports printer handshaking, the suspension time may be long. If the
printer has a large buffer, the program may wait for many seconds while the printer
catches up. If the printer reports not-ready when out of paper or ribbon, the program can
be suspended indefinitely. These things usually cause no problem. However, a program
attempting to monitor two devices at once may wish to poll the printer through the BIOS
LISTST function before requesting this service.

MP/M 1: If two processes use this service at once, their output will be merged at the
printer, producing garbage. Use the MXList mutual exclusion queue to get exclusive
control of the printer before requesting list output.

MP/M 2: An Attack List Function is performed if the calling process doesn’t
already own the list device; this prevents contention but may suspend the program.

Related requests: none.

Punch Output (CP/M only)

A
BC: 04h
DE: byte
HL:

The byte in register E (DL for CP/M-86) is sent to the device currently assigned to
PUN:. The program will be suspended until the device is ready to accept the byte.

MP/M: The service request is honored, but the byte is sent to the current console
device for the process, not to a punch.

List Output Byte

A

BC: 05h
DE: byte
HL:

The byte in register E (DL for CP/M-86) is sent to the device currently assigned to
LST:. The program is suspended until the device is ready to accept the byte.

461

462

Most programs have no need to avoid the BDOS’s control of console output. There
are programs—full-screen editors and simulation games come to mind—that depend on
a very close interaction between keyboard and screen; the program uses the keys as
control inputs rather than as character inputs and the screen as a dynamic status display
rather than as an echo of the input. Such programs have traditionally used BIOS
functions for I/O in order to circumvent the BDOS. Service 6 should now be used
instead; to continue calling the BIOS is to risk incompatibility with later versions of the
system.

Related requests: Console Input Byte (1), Console Output Byte (2), Console Input Line
(10), Console Output String (9), Console Status (11).

Under CP/M the current value of the IOBYTE can be found in low storage at
location 03h. That is not true of CP/M-86; this service request is the only way of
examining the IOBYTE in that system.

The initial value of the IOBYTE is set during a cold start by code in the BIOS. See
Chapter 15 for a discussion of altering this setting.

MPIM: 1/O assignments and the IOBYTE are not supported. This function returns
FFh, a legal but highly unlikely value.

Related request: Set IOBYTE (8).

“—

Direct Console I/0O

A:

BC: 06h
DE: flag
HL:

This request reads or writes the current console device, bypassing all the control-
character checks. One of three operations is done depending on flag, the value in register
E (DL for CP/M-86).

If flag is FFh, the console is sampled. If a byte is available, the byte is returned in
register A; if no byte is ready, 00h is returned instead. The input character is not echoed
to the screen; that is up to the calling program.

MP/M: If flag is FEh, the console is sampled and a flag is returned as for service 11.

Otherwise, flag is sent to the current console as output. Tabs are not expanded. The
console copy (control-p) and halt output (control-s) flags are ignored.

Get IOBYTE (CP/M only)

BC: 07h

DE:

HL:

The current value of the CP/M IOBYTE is returned in register A. The four fields of
the byte have these meanings:

(bit number) 7 6 5 4 3 2 1 0
IOBYTE: list punch reader [console
bit value = 00 01 10 11
console TFIY: CRT: BAT: UC1:
reader TTY: PTR: URT1: UR2:
punch TTY: PTP: UP1: upP2:

list R CRT: LPT: ULT1: 463

464

The IOBYTE is not reset during a warm start; it is only changed by this request, the
STAT command, or by a cold start. Your BIOS may ignore the IOBYTE, or may not
support some values.

The IOBYTE is kept in location 03h; older programs may manipulate it directly.
CP/M-86: The IOBYTE is kept within the BDOS; this call must be used to alter it.

MP/M: The request has no effect; I/O assignment and the IOBYTE are not
supported.

Related request: Get IOBYTE (7).

When controlling a special console device for which bit 7 is significant, use service
6.

The use of direct cursor addressing may invalidate the BDOS’s knowledge of the
cursor position, causing it to expand tabs incorrectly. Avoid tabs unless you are sure that
only normal characters have been sent since the last CR.

MPI/M: This request is more efficient than a sequence of byte requests, because
fewer dispatch sequences are needed.

Related requests: Direct Console I/O (6), Console Output Byte (2).

Set IOBYTE (CP/M only)

A

BC: 08h

DE: IOBYTE

HL:

bit number: 7 6 5 4 3 2 1 0
IOBYTE: L list punch T reader console

The value in the E register (DL for CP/M-86) is set as the current IOBYTE. It
begins to control output direction immediately. The meanings of the bit fields are

bit value = 00 01 10 11

console TTY: CRT: BAT: UcCt:
reader TLY: PTR: URT: UR2:
punch TTY: PTP: UP1: up2:
list TTY: CRT: LPT: UL1:

Console Output String

A:

BC: 0%h

DE: 1 string

HL:

string: | ... any text at all ending with . .. | s |

The string of ASCII text is written to the current console. The dollar sign (ASCII
character 24h, may be another currency symbol outside the U.S.) that terminates the
string is not written. Bit 7 of each byte is set to 0 before transmission to the BIOS.

If the BDOS has seen a control-s, it waits for another character to be typed before
completing the output and returning; the calling program is suspended during this time.
If the console-copy flag is set, the string is also sent to the current list device.

If a tab (09h) appears in the string, the BDOS writes some number of spaces
instead, based on its knowledge of the position of the cursor.

465

466

Service 10 is to be preferred over other console input requests. It allows the typist to
correct errors in a familiar way; this increases user confidence. It is the only input
method that can receive input from a submit file via XSUB. Under MP/M it is more
efficient than 1-byte requests because fewer dispatch sequences are done.

The cursor returns to its original position on a control-x; this is convenient when a
prompt is written before the service is requested. Use of direct cursor addressing can
invalidate the BDOS’s knowledge of the cursor position.

Input ends with a linefeed, carriage return, or a full buffer; the program can’t tell
which occurred. Control-p, control-s, and edit characters are not returned; if DE-
SPOOL is active, control-d is swallowed as well.

Related requests: Console Input Byte (1), Console Status (11).

This service has two uses. The most common use is to check for an abort request
from the user during a long spell of otherwise silent processing. PIP uses this technique:
if the user has pressed a key, it assumes that the user wants to end the current data
transfer. This may be too abrupt; the user might be asked if an abort is really wanted.

The second use occurs when a program is managing both the console and another
serial device. By polling the console with service 11 it can avoid being suspended should
input not be ready. MP/M: Polling the console is not recommended; any kind of polling
loop degrades the system. Attach a separate process for each device and let each wait for
mput.

Related requests: Console Input Byte (1), Console Input Line (10), Direct Console /O
(6).

Console Input Line

A

BC: 0Ah

DE: 1 buffer

HL

buffer: | max l cnt [returned data . . .

The BDOS notes the current cursor position as it knows it, then reads characters
from the console device until a CR or LF is received, or until max characters have been
received. The typist may employ all the input editing control characters; the BDOS
returns the input line as it finally appears on the screen. Control-r, -u, and -x return the
cursor only to the original cursor position. Control-c as the first input byte terminates the
program.

The number of bytes received is returned in cnt. The terminating byte (CR or LF) is
neither returned nor counted. If a tab is received, the BDOS echoes some number of
blanks according to its knowledge of the cursor position; the tab byte is returned in the
buffer, however.

Console Status Check

BC: 0Bh

DE:

HL:

The current console device is polled. If a byte is ready for input, a nonzero value is
returned in register A, or else 00h is returned.

BDOS 10

BDOS 11

467

468

The system identification serves two purposes. A program written for CP/M that
uses services not available in MP/M can ensure that it is really running under CP/M by
checking the contents of register H.

A program written for a certain level of CP/M can ensure that it is not running in an
earlier level that lacks the services it needs. For instance, a program that uses the Direct
Access file services might contain:

Mvl C,12
CALL BDOS
MOV AL
CPI 22H

JC OLD$VERSION

Note that the comparison should not be for equality as CP/M 3.0 will presumably support
everything that CP/M 2.2 supports.

Related requests: none.

This request is used to allow the operator to change the diskette on a drive. Without
areset, when the BDOS next accesses the directory of the changed diskette it will detect
the change (by comparison with the check vector for the drive) and mark the drive
read-only.

The request should be used with care as it removes read-only status from all drives,
including those that aren’t changed and those where it was set by user command. See
Reset Drive (37) for a more specific request, and one more likely to succeed under
MP/M.

Related requests: Reset Drive (37), Protect Drive (28), Get Read-Only Vector (29).

BDOS 12

Get System Identification

BC: 0Ch

DE:

HL:

version

HL: [system

A value that identifies the system and version is returned in the HL register pair (BX
for CP/M-86).

The system value is 00h for CP/M, and O1h for MP/M.

The version value is the two-digit version number of the system in BCD (e.g., 22h

for CP/M version 2.2 and the first release of CP/M-86 and 30h for MP/M 2).

BDOS 13

Reset All Drives

BC: 0Dh —|

DE:

HL:

The BDOS resets its knowledge of the state of all disks. Read-only disks are set to
read—write. Allocation and directory check information is discarded. As each disk is
selected a new allocation vector and a new check vector will be built, and R/W disk
status will be set.
MP/M I:1f any process has a file open, the reset will not be done and FFh will be
returned in register A.
MPIM 2: 1If a different process has an open file on a drive that is read-only or has
removable media, the reset will not be done and FFh will be returned. 469

Services that take an FCB as their parameter operate on a disk drive according tothe
drivecode byte of the FCB. If that byte is O0h, those services operate on the default
drive.

The current default drive number can be obtained with service 25. (In ordinary
CP/M the default drive number can be found in low-storage location 04h. This is not true
of MP/M or CP/M-86.)

When a program ends with a warm start the drive that is the default remains the
default drive; its letter will appear in the CCP or CLI prompt seen by the user.

Related request: Get Current Drive (25).

The ex and s2 bytes should be set to 00h before the service to ensure opening the
first extent of the file. The old direct access technique of opening other extents is not
reliable in present systems; use the direct access services instead. The current record
number cr should be set to 00h after opening a file for sequential access, otherwise the
first read will not return the first record.

Once an FCB has been opened don’t move it elsewhere in storage. If the file is
remote, accessed through CP/NET, moving the FCB will cause subsequent file opera-
tions to fail.

MPIM I: The drive is reserved and cannot be reset until the process ends or issues
Free Drive (39). MP/M 2: Only removable drives are reserved. File 1D is used in services
41-43,

MPIM 2: Use Get Directory Data (101) to see if passwords are enforced. Use Read
XFCB (102) to see if this file has one.

Related requests: Close File (16), Make File (22), Set File Buffer Address (26), Read
XFCB (102), Set Password (106).

470

Select Drive BDOS 14

A

BC: 0Eh
DE: drive
HL:

Register E (DL for CP/M-86) contains a number in the range 0...15, signifying a
disk drive A...P respectively. If that drive is not the current default drive, it is made the
default drive. If it has not been selected since the last warm start or disk reset, its
directory is scanned and used to build allocation and check vectors.

BDOS 15

Open Existing File

A
BC: OFh
DE: }feb
HL:
0 1 e 9 ... B Cc D E F
feb: dr | filename] filetype 1 ex ‘ ‘ 52

cr | id | |

The drivecode, if not zero, is used to select a drive. The directory is scanned for the
first match to the fileref and extent number. The fileref may contain question marks. A
matching directory entry is copied into the FCB and register A is returned as 0, 1, 2, or 3.
If no match is found, FFh is returned.

CP/M: Only files created under the active user code can be found.

MP/M I: Files created under user code 0 are equally accessible.

MPIM 2: Set bit f5" if the file is to be unlocked (if other processes may open it for
output). Then a File ID is returned in bytes 21h and 22h of the FCB. A password may be
given in bytes 0...7 of the current file buffer. Set bit f6” to say the file is to be read-only.
In that case, if the search of the active user code fails, the BDOS will also search among
user code O files that have the SYS attribute. 471

472

The purpose of the service is to update the directory entry for the last-altered extent
of an output file (extents prior to the last are updated automatically as they are created). A
file used only for input need not be closed since its data map has not been changed.

MPI/M I: Closing the file does not release the drive.

MPIM 2: A permanent close (f5°=0) of the last open file on a drive releases the
drive.

MP/M 2: The BDOS checks that the FCB has been opened correctly; if not, the
close is not done and FFh is returned. Use temporary close (f5'=1) as a checkpoint prior
to console input that might cancel the command.

Related request: Open File (15).

BDOS 16

Close Output File

A
BC: 10h
DE: 4 fcb
HL:
0 1 S 8 8 ... B Cc D E F
feb: dr fifename filetvpe | ex I sl | 52] re
L duta map .

The drive code, if not zero, is used to select a drive. The directory is scanned for the
first match to the fileref and extent number under the active user code. The fileref may
contain question marks.

MP/M I: Files under user code 0 are equally accessible.

If the search succeeds, the record count and data map from the FCB are copied into
the directory entry and 0, 1, 2, or 3 is returned in register A. If the search fails, FFh is
returned.

MP/M 2: Set bit f5' to say the close is not permanent; the directory is updated but
the file remains locked if it was so. Otherwise the file is unlocked and locked records are
released.

473

Normally a record holding four directory entries is set in the file buffer. If the —
default drive is remote (reached via CP/NET), then only the matching entry will appear
in the buffer; the other three positions will be garbage.

See Chapter 14 for a number of example programs that use Search First and Search
Next (18).

When there are question marks in all fields from dr through ex, the first directory
entry that has ever been used will be returned (MP/M 2: this may be the Directory Label
oran XFCB). An unused entry has E5h in its first byte. Entries that have never been used
are not returned.

Related request: Search For Next File (18).

474

BDOS 17

Search for First File

A
BC: 11h
DE: § feb
HL:
0 1 wex 8 9 ... B C D E F
fch: dr filename filervpe | oy | ' l

The directory of the default drive is scanned for an entry that matches the fileref and
extent number in the FCB, which may contain question marks, If a match is found, the
directory entry is placed at some offset in the current file buffer, and register A is set to
the position of the entry in the buffer (0, 1, 2, or 3 corresponding to an offset of 0, 32, 64,
or 96 bytes). If no match is found, register A is set to FFh.

If ex is O0h, only the first extent for a file can be matched. If ex contains a question
mark, the first entry found will be returned.

Normally dr is ignored and only files with the current user code are matched. If dr
contains a question mark, all directory entries of any user code, and entries of any type
including those not in use, are compared.

475

476

Normally a record holding four directory entries is set in the file buffer. If the
default drive is remote (reached via CP/NET), then only the matching entry will appear
in the buffer; the other three entries are garbage.

See Chapter 14 for a number of example programs that use Search First and Search
Next (18).

When there are question marks in all fields from dr through ex, all directory entries
that have ever been used will be returned (MP/M 2: this may include the Directory Label
and XFCBs). An unused entry has E5h in its first byte. Entries that have never been used
are not returned.

No other file operation should be done between two Search requests because the
BDOS may lose its position in the directory. In some versions of the system this request
can be used following Close File to find the next file after the one closed. The technique
is not recommended.

Related request: Search for First File (17).

When replacing a file, it is best to write the new version, close it, delete the old one,
and rename the new one. By convention files with names beginning with $, and files
with the type of .$$$, are scratch files and may be deleted without warning.

MPIM I: A file deleted by one process might have been in use by another; this is
especially true of files under user code 0.

MP/M 2: A file opened unlocked by another process can be deleted, but the service
will fail if any matching file is open read-only or locked by another process. Use Get
Directory Data (101) to find out if passwords are enforced. Use Read XFCB (102) to see
if this file has one.

Related requests: Set File Buffer Address (26), Set Password (106).

BDOS 18

Search for Next File

A:
BC: 12h
DE: }ich
HL:
0 1 ... 8 9 ... B c D E F
feb: dr filename . . Slervpe l ey l l |

The directory of the default drive is scanned for an entry that matches the fileref and
extent number in the FCB, which may contain question marks. The search starts with the
entry following the one returned by the last Search (17 or 18). If a match is found, the
directory entry is placed at some offset in the current file buffer, and register A is set to
the position of the entry in the buffer (0, 1, 2, or 3 corresponding to an offset of 0, 32, 64,
or 96 bytes). If no match is found, register A is set to FFh.

If the extent number is 00h, only the first extent entry for a file can be matched. If it BDOS 19
contains a question mark, the first extent entry found will be returned.

Normally dris ignored, and only files with the current user code are matched. If dr
contains a question mark, all directory entries of any user code, and entries of any type
including those not in use, are compared.

Delete File

A:
BC: 13h
DE: }feb
HL:
0 1 — - 9 ..x B c D E F
feb: dr filename J filetype] l] ‘

The drivecode, if not zero, is used to select a drive. The directory is scanned for all
entries that match the given fileref (which may contain question marks). Only files
created with the active user code are considered.
MPI/M 1I: Files under user code 0 are compared as well.
All matching entries are deleted, and the space they control is made available for
other files.
MP/M 2: Set bit {5” to say that only XFCBs are to be deleted; the files themselves
will remain. A password check may be made; a password may be given in the current file 477
buffer.

478

The BDOS doesn’t check to see if the FCB has been opened. An attempt to read
from an unopened FCB will produce unpredictable results. MP/M 2: If the FCB hasn’t
been opened, OAh is returned and no read is done.

Normally cr is set to 00h when the file is opened and altered thereafter only by the
BDOS. A limited form of direct access can be done by setting ¢r in the calling program.
The present direct access services are more convenient and reliable.

The test for end of file assumes that all extents except the last one are full. A file
built with direct access may contain unallocated areas that will cause end of file to be
reported early.

A file built with direct access may contain unwritten records that can be read with
this request. Such records may contain either garbage or binary zeros, depending on the
type of direct access write request used to build the file.

Related requests: Open File (15), Set File Buffer Address (26), Set Record Count (44).

BDOS 20

Sequential Read

Al
BC: 14h
DE: }fcb
HL:
0 1 ... 8 9 ... B c D E F
feb: dr l filename I filetype | ex ‘ I 52 I re
...datamap...

7

The drivecode, if not zero, is used to select a drive. The 128-byte record at position
cr of the extent described by the FCB is read and placed in the current file buffer. The cr
field is incremented. If it then equals r¢, the entire extent has been read; the directory
entry describing the next extent of the file is copied into the FCB and cr is set to 00h. If
there is no further extent, the data map is set to zero.

MPIM 2: This process may be repeated up to 15 times depending on the current
record count; see Set Record Count (44).

When the read is successful, register A is returned as 00h. End of file occurs when
the data map position corresponding to cr is zero. When it occurs, register A returns
FFh.

MPIM 2: On any error, register H contains the count of records read; see Summary
of Error Codes.

479

480

It is possible to write to an unopened FCB but the extent can’t be closed successful-
ly. MP/M 2: If the FCB hasn’t been opened, error code OAh is returned, and no write is
done.

Normally cr is set to 00h when the file is opened and altered thereafter only by the
BDOS. A limited form of direct access can be done by setting cr in the calling program.
The present direct access services are more convenient and reliable.

MP/M I: There is nothing to keep two processes from writing to the same file at
once.

MP/M 2: Unless the file was opened unlocked, only one process may have it open
for output at a time.

Related requests: Make File (22), Close File (16), Set File Buffer Address (26), Set
Record Count (44).

BDOS 21

Sequential Write

A
BC: 15h
DE: }feb
HL:
0 1 . | 9 o B Cc D E F
feb: dr 1 filename l filetype | ex ’ I 52 | ri

c.datamap ...

«_| |

The drivecode, if not zero, is used to select a drive. If no block has been allocated to
record cr of this extent, one is obtained and entered in the data map. The 128-byte record
in the current file buffer is written to position ¢r of the extent, and ¢r and rc are
incremented. If the extent is then full, the FCB is copied into the matching directory
entry, anew entry is made for the next extent, and re, cr, and the data map are set to zero.

MPIM 2: This process may be repeated up to 15 times depending on the record
count; see Set Record Count (44).

When the write is successful, register A returns 00h. If no directory entry or no
allocation block can be obtained when needed, a nonzero value is returned in register A.
MPIM 2: 1f the FCB was opened read-only, a nonzero value is returned. On any error,
register H contains the count of records written; see Summary of Error Codes.

481

482

Normally the extent number is zero, causing the first extent of the file to be created. =

Later extents are created by the BDOS as writing proceeds. It is possible to make entries
for other extents, but this is not recommended.

If the fileref contains lowercase, unprintable, or special characters, a program will
be able to access it but the user won’t be able to name it in a command. It is possible to
create duplicate filerefs; it is up to you to avoid this. MP/M 2: The BDOS returns FFhif a
duplicate fileref exists under the active user code.

MP/M I: This request causes the selected drive to be reserved; it can’t be reset until
this process ends or issues Free Drive (39).

MPIM 2: The drive will be released when all files on it are closed. Use Get
Directory Data (101) to see if XFCBs are being created when files are made.

Related request: Sequential Write (21).

If the new fileref contains lowercase, unprintable, or special characters, a program
will be able to access it but the user won’t be able to name it in a command. It is possible
to create duplicate filerefs; it is up to you to avoid this. MP/M 2: The BDOS returns FFh
if a duplicate fileref exists under the active user code.

MPIM I: There is no way to keep one process from renaming a file that is in use by
another process.

MP/M 2: FFh is returned if the file is in use by another process, unless that process
opened the file unlocked. Use Get Directory Data (101) to see if passwords are enforced.
Use Read XFCB (102) to see if this file has one.

Related requests: none.

Make New File

A
BC: 16h
DE: } fcb
HL:
0 1 s B 9 ... B Cc D E F
fch: dr Sfilename .] fitetype | ex I l ‘

| o []

The drivecode, if not zero, is used to select a drive. A directory entry is created for
the given fileref and extent number. The new entry shows that no space has been
allocated to this extent. If no directory entries are available, FFh is returned in register A;
otherwise register A contains 0, 1, 2, or 3, indicating success.

MP/M 2: Set bit f5" if the file is to be opened unlocked; other processes will be able
to modify the file while it is open. Set bit f6” if the file is to have a password. Supply the
password in bytes 0...7, and the password application flag in byte 8, of the current file
buffer.

Rename File

A:
BC: 17h
DE: }feb
HL:
0 1 - 8 9 ... B c D E F
fcb: dr filename fitetype I |]
00h newnanie newrype

The drivecode, if not zero, is used to select a drive. The directory is scanned and all
entries for the explicit fileref in bytes 01h...0Bh of the FCB are changed to that in bytes
11h...1Bh. If no such directory entry is found, FFh is returned in register A; else

register A is returned with 0, 1, 2, or 3 MP/M 2: A password check may be performed.

The password can be supplied in bytes 0...7 of the current file buffer.

BDOS 22

BDOS 23

483

The drives indicated in the map are active, but some of them may be read-only. The
allocation vector and check vector information for read-only drives is undependable, as
the diskette in a read-only drive may not be the one that was mounted when the
information was built. Use Get Read-Only Map (29) to find out which active drives are
read-only.

The bit map returned by this function has the same format as that returned by Get
Read-Only Map (29) and input to Reset Drive (37), Access Drive (38), and Free Drive
(39).

Related requests: Reset Disk System (13), Get Read-Only Vector (29).

This service allows a program to find out the default drive preferred by the user (the
one current at the time the program is entered).

Under CP/M, the default drive number can be found in location 04h of working
storage. This is not true of CP/M-86 or of MP/M.

Related request: Select Drive (14).

484

Get Active Drive Map

A

BC: 18h

DE:

HL:

A bit map of the drives that are currently active is returned in the HL register pair
(BX for CP/M-86). The bits of the map stand for drives as follows:

bitnumbers: 7 6 5 4 3 210 76 54 3 210
HL:]P ONMLEKJ I HGFEDCEBA

Each drive indicated by a 1-bit has been selected since the last warm start or Reset
Disk System (13) service. These drives have active allocation and check vector informa-
tion.

Get Default Drive Number

A

BC: 18h

DE:

HL:

A number in the range 0...15 is returned in register A, signifying that the current
default drive is A...P respectively.

BDOS 24

BDOS 25

485

486

When a CP/M program is first entered, the file buffer address is set to 0080h.
Under CP/M and MP/M there is no service request to discover the present value of the
buffer address.

CP/M-86: This request sets the file buffer offset within a segment. Use service 51 to
change the file buffer segment base. Use service 52 to retrieve the buffer segment base
and offset.

MP/M 2: The file buffer address is taken as the address of a password for those
requests that use one (15, 19, 23, 30, 100, 103). Depending on the record count (44) the
file buffer may be from 1 to 16 128-byte records long for sequential /O, and from 2 to 32
records long for Test and Write (41).

Related requests: Set Record Count (44), Set File Buffer Segment Base (51), Get File
Buffer Address (52).

See Chapter 14 for an example of a program that displays the allocation vector.

Use the Select Drive (14) service to select the drive whose allocation vector you
want. Use Get Disk Parameters (31) to find out the number of allocation blocks, and
hence of bits in the map.

Use Get Read-Only Map (29) to find out if the drive is read-only; if so, the
allocation vector may not be valid. It reflects the allocation status of the diskette that was
loaded when the drive was selected; a different diskette may be in it now.

Related requests: Select Drive (14), Get Read-Only Map (29), Get Disk Parameters
(31).

—

Set File Buffer Address BDOS 26

A

BC: 1Ah
DE: 1‘ file buffer
HL:

The address in register DE (DX for CP/M-86) is established as the address of the file
buffer for reading and writing files and for searching the directory.

BDOS 27

Get Allocation Vector

A

BC: 1Bh

DE:

HL:

The address of the allocation vector for the default drive is returned in the HL
register pair (BX and ES for CP/M-86). The allocation vector is a bit map with as many
bits as there are allocation blocks on the drive. A 1-bit means that the corresponding
block is in use; a 0-bit means that it is free. 487

Use Get Read-Only Map (29) to find out which drives currently have read-only =
status: use Reset Drive (37) to reset that status. Use Select Drive (14) to select the drive
that this service will act upon.

Related requests: Select Drive (14), Get Read-Only Map (29), Reset Disk System (13),
Reset Drive (37).

Drives are marked read-only either by user command, by use of Protect Drive (28),
or by the BDOS when it detects the fact that the diskette on the drive is not the same as
when the drive was activated.

The check vector and allocation vector for a read-only drive describe the disk or
diskette that was mounted when the drive was selected. If a different volume is now
mounted, the information is invalid.

The bit map returned by this function has the same format as that returned by Get
Active Drive Map (29) and input to Reset Drive (37), Access Drive (38), and Free Drive
(39).

Related requests: Reset Disk System (13), Protect Drive (28), Reset Drive (39).

488

BDOS 28

Protect Drive

BC: 1Ch

DE:

HL:

The default drive is set to read-only status. It will keep this status until it is reset or
until a warm start.

BDOS 29

Get Read-Only Map

A

BC: 1Dh

DE:

HL:

A bit map of the drives that are currently marked read-only is returned in the HL
register pair (BX for CP/M-86). The bits of the map stand for drives as follows:

bitnumbers: 7 6 5 4 3 2 10 765 43210
HL:|P ONMLK JI HGFEDCEBA

Each drive indicated by a 1-bit has been selected and then set to read-only status since the
last warm start, Reset Disk System (13), or Reset Drive (39) service. The BDOS holds
allocation and check vector information for these drives dating from the time of their
selection, but it may not be valid. 489

Each file has 11 attribute bits, one in each byte of the filename and filetype, named —
f1’ through f8' and t1’ through t3’ respectively.

Bit t1° is the file R/O attribute; t2° is the SYS attribute. Bit t3" is the Archive
attribute, cleared to zero when an extent is altered in any way. Bits f5° through f8’ are
reserved for future system use. Bits f1’ through f4' are available for the use of
application programs.

To change only certain bits use Search First and Search Next (17 and 18) to obtain a
copy of the first directory entry for the file. The entry returned has all of the attribute bits
at their present values. Alter the bits of interest, zero the drivecode, and use the entry
itself as the FCB in this request.

MP/M 2: Use Get Directory Label Flag (101) to find out if passwords are enforced;
use Read XFCB (102) to find out if this file has a password.

Related requests: Search (17, 18), Rename File (23), Write XFCB (103).

Use Select Drive (14) to select the drive whose DPB you want to inspect. There is a
map of the DPB in the CP/M Maps section. The DPB and its uses are described in
Chapter 14.

Access to the DPB is necessary to a program that wants to read the disk directory as
it contains the number of directory entries and the track offset. The DPB contains the
number of allocation blocks, which is required to make sense of the allocation vector. A
program that intends to interpret the data map in an FCB, either to do its own space
allocation or in order to do nonstandard direct access, must look at the DPB to find out
the size of an allocation block and whether data map entries are 1 or 2 bytes in length.

A programmer with a thorough understanding of the DPB and of the BIOS might
modify the DPB in order to handle nonstandard diskettes, but this requires extreme care
and would be BIOS dependent.

490 Related requests: Select Drive (14), Get Allocation Vector (27), BIOS function Seldsk.

Set File Attributes

A
BC: 1Eh
DE: }reb
HL:
0 1 w8 9 ..o B Cc D E F
feb: dr l filename filetype I I ’ |

The drivecode, if not zero, is used to select a drive. The directory is scanned for all
entries that match the given fileref (which must be explicit). The attribute bits (the most
significant bits of bytes 01h...0Bh) from the FCB are copied in each matching directory
entry, replacing the attribute bits in the directory.

MPIM 2: A password check may be performed. A password may be supplied in
bytes 0...7 of the current file buffer.

Get Disk Parameters

A

BC: 1Fh

DE:

HL:

The BDOS returns the address of the active Disk Parameter Block (DPB) in the HL
register pair (BX and ES for CP/M-86). The DPB describes the active drive and contains
all the information used by the BDOS to control space allocation.

BDOS 30

BDOS 31

491

492

Only files created under the active user code may be accessed. Only those files can
be found by the Search First and Search Next requests (17 and 18), except for one special
case of input to those requests.

MPI/M I: Files created under user code 0 are also accessible for all purposes.

MPIM 2: A file created under user code 0 can be accessed (for input only) under
these conditions: (1) the file is opened read-only; (2) it can’t be found under the active
user code; (3) it has the SYS attribute.

This request does not alter the state of the disk system. Therefore a program may
alternate user codes in order to read alternately from files created under different codes.

Related requests: none.

When some, but not all, records of an allocation block have been written with
Direct Write (34), any record of the block—including those not written—can be read.
Avoid the problem by initializing all records of a file, or build the file with Direct Write
with Zero Fill (40) so the condition can be detected.

CP/M 2, MP/M 1: The maximum file size is 8 MB; the maximum record address is
65535 (OFFFFh). If the third (most significant) address byte is nonzero, error code 06h
is returned.

MP/M 2: The maximum file size is 32 MB; the maximum record address is 262143
(3FFFFh). If the third address byte exceeds 03h, error code 06h is returned.

Related requests: Set File Buffer Address (26), Direct Write (34, 40).

—”

Get or Set User Code

A:

BC: 20h
DE: FFh/code
HL:

This request may either interrogate the active user code or change it. If register E
(DL for CP/M-86) contains FFh, then the active code is returned in register A. If it
contains another value, then the least significant 4 bits of the value become the new
active user code.

Direct Access Read

A
BC: 21h
DE: { fcb
HL:
0 1 —_ 8 9 ... B C D E F
feb: dr | filvnanie ‘ filetvne [ey ‘ st I 2 [
coedata map ..
or I addrosy ’

The drivecode, if not zero, is used to select a drive. The record address and the
allocation block size determine an extent number, a data map index, and a record index.
If the FCB does not reflect the wanted extent, that extent entry is found and copied to the
FCB (if the data map of the FCB has been changed. this extent entry is updated first).

The data map is indexed to find the wanted allocation block number; that and the
record index give the disk address. The wanted record is then read to the current file
buffer, cris set to the position of the record in the extent, and 00h is returned in register
A. Errors are reported by nonzero values of register A. Codes 01h and 04h signal
nonexistent data; see the Summary of Error Codes for serious errors.

BDOS 32

BDOS 33

493

494

It is possible to create files with unwritten records or unallocated blocks or extents.
Some unwritten records can be read with apparent success by either Sequential Read (20)
or Direct Read (33). Sequential reading will stop with apparent end of file at the first
unallocated block or extent. The first problem can be handled by Direct Write with Zero
Fill (40); all can be avoided by writing all records.

CP/M 2. MP/M I: The maximum file size is 8 MB; the maximum record address is
65535 (FFFFh). If the third (most significant) address byte is nonzero, error code 06h is
returned.

MPIM 2: The maximum file size is 32 MB; the maximum record address is 262143
(3FFFFh). If the third address byte exceeds 03h, error code 06h is returned.

Related requests: Set File Buffer Address (26), Direct Read (33), Direct Write with Zero
Fill (40), Get File End Address (35).

The address returned reflects the last existing record. It may not represent the actual
size of the file, since files created with direct access can contain “holes,” or unallocated
space,

This service can be used to append data sequentially at the end of a file: open the
file, get its end address, decrement the address, use Direct Read (33) to read the last
record. The FCB is then prepared for sequential writing; the next write will replace the
last record.

CPIM 2, MP/M 1: If the third byte of the address is nonzero, the file contains a
record at the maximum address of O0FFFFh.

MPIM 2: If the third byte of the address is 04h, the file contains a record at the
maximum address of 03FFFFh.

Related requests: Direct Write (34), Get Direct Address (36).

Direct Access Write BDOS 34

A
BC: 22h
DE: } feb
HL:
0 1 S o8 9 ... B c D E F
fcb: dr | filename J Siletype I ex I sl I 52 I r
...datamap. ..

or l wddress I

The drivecode, if not zero, is used to select a drive. The record address and the
allocation block size determine an extent number, a data map index, and a record index.
If the FCB does not reflect the wanted extent, that extent entry is found and copied to the
FCB. If the data map of the FCB has been changed, this extent entry is updated first. If
the new extent doesn’t exist, one is created (showing no space allocation) and copied to
the FCB. BDOS 35

The data map is indexed to find the wanted allocation block number. A block is
allocated if necessary. The block number and record index give the disk address. The
record is written from the current file buffer, cr is set to its position in the extent, and 00h
is returned in register A.

Errors are reported as nonzero values in register A; see Summary of Error Codes,
Code 02h signals no room for data, and code 05h signals no room in the directory.

Get File End Address

A
BC: 23h
DE: } fcb
HL:
0 1 - 9 A ... B C D E F
fcb: dr I filename | filerype l l ' I
‘ address]

The drivecode, if not zero, is used to select a drive. The directory is scanned to find
the highest numbered extent of the named file. The direct address of the file’s last record.
plus one, is set in the direct address field of the FCB. 495

496

If the data records in a file are all of the same size, the standard record address at
which each data record begins can be calculated. When that is not the case, the only
convenient way of finding a record directly is through an index that relates some key
value of each record to the record’s address. By reading a file sequentially, and noting
the record address and a key value for each record, you can build an index for a file that
was created sequentially.

Related request: Get File End Address (33).

This service allows the program to reset a drive when the user is to change the
diskette mounted in it. If the drive is not reset before such a change, the BDOS will spot
the fact that the diskette has been changed and will mark the drive read-only.

The service is similar to, but safer than, Reset All Drives (13). Only the drives the
program needs are reset; other drives—which might have been made read-only by the
user—are left alone.

The drive map input to this service is identical to that returned by Get Active Drive
Map (24) and Get Read-Only Map (29).

Related request: Reset Disk System (13).

S

Get Direct Address

A

BC: 24h

DE: t1eb

HL:

feb: l | J ex I s] 52 | re

coodatamap. ..

or l address J

The extent number and current record number of the FCB are used to calculate the
direct address of the last record that was returned by Read Sequential (20). The address is
placed in the direct address field of the FCB.

Reset Drive (MP/M only)

BC: 25h

DE: drive map

HL:

bitnumbers: 7 6 65§ 4 3 2 10 76 5 4 3 2 10
drive map: [P ONMLEKIJIHGFEDCTE B A

The drives specified by 1-bits in the drive map in the DE register are reset. Each
such drive is marked read-write, and the BDOS discards its allocation and check vector
information for that drive. New allocation and check information will be built when a
drive is next selected.

MPIM 1:1f any process has a file open on a selected drive, nothing is done; FFh is
returned in register A.

MPIM 2: 1f a selected drive has removable media or is set read-only, and if another
process has a file open on that drive, nothing is done and FFh is returned.

BDOS 36

BDOS 37

497

Drives are reserved automatically when an Open File (15) or Make File (22) service
request is issued. If a program intends to access a drive in some nonstandard way,
without opening a file on it, it should use this request to prevent the drive’s being reset
during its work.

The only way to free a drive reserved by this request is for the program to terminate,
or to issue the Free Drive (39) request.

The bit map input to this request has the same format as that returned by Get Active
Drive Map (24) and Get Read-Only Map (29) and input to Free Drive (39).

Related requests: Get Active Drive Map (24), Free Drive (39).

This service allows the program to give up the drives it might have reserved by
issuing Open File (15), Make File (22), or Access Drive (38) service requests. The only
other way to free the drives reserved by a process is for the process to terminate.

The bit map input to this request has the same format as that returned by Get Active
Drive Map (24) and input to Reset Drive (37) and Access Drive (38).

Related requests: Get Active Drive Map (24), Access Drive (38).

498

Access Drive (MP/M only)

BC 26h

DE: drive map

HL:

bitnumbers: 7 6 5§ 4 3 2 10 76 65 4 3 2 10
DE:({P ONMLK J I HG F E I)(‘B.—j

The drive map in the DE register is used to reserve drives to this process. Where the
input map has a I, the corresponding drive is reserved by this process. That drive cannot
be reset until this process (and any other process that has reserved it) frees it or
terminates.

Free Drive (MP/M only)

A

BC: 27h

DE: drive map

HL:

bitnumbers: 7 6 5 4 3 2 10 765 4 3210
DE:|P ONMLEK J I HGFEDCTEBA

The drive map in the DE register is used to release drives reserved by this process.
Where a bit in the map is a 1, and if the corresponding drive has been reserved by this
process, the drive is released.

MP/M 2: If this process has an open file on a released drive, the BDOS forgets it; the
file is considered to be not open and any further use of its FCB will return an error code.

BDOS 38

BDOS 39

499

500

When Direct Access Write (34) is used to build a file, unwritten records within an
allocation block contain unpredictable garbage. This request fills the unwritten records
of each new block with binary zeros.

It remains possible to create a file with “holes” (unallocated blocks or extents).
Sequential reading will stop with apparent end of file at the first unallocated block or
extent. A direct read to an unallocated area returns a nonzero code in register A.

Related Requests: Set File Buffer Address (26), Direct Write (34).

BDOS 40

Direct Access Write with Zero Fill

Al

BC: 28h

DE: fh:b

HL:

0 1 9 A ... B Cc D E F

fch: il | filename ‘ il vpre | e |) | 7 i

dhata map . .

or [aelefriss ‘

The drivecode, if not zero, is used to select a drive. The record address and the
allocation block size determine an extent number, a data map index, and a record index.
If the FCB does not reflect the wanted extent, that extent entry is found and copied to the
FCB. If the data map of the FCB has been changed, this extent entry is updated first; if
the new extent doesn’t exist, one is created (showing no space allocation) and copied to
the FCB.

The data map is indexed to find the wanted allocation block number. If necessary, a
block is allocated and all records in it filled with binary zeros. Then the record in the
current file buffer is written to disk, cr is set to its position in the extent, and 00h is
returned in register A.

Errors are returned as nonzero values in register A; see Summary of Error Codes.
Code 02h signals no data space, and code 05h no directory space.

501

502

This service allows several simultaneous processes to update the same file without
loss of data. Each process must open the file unlocked, then proceed thus:

I. Read the desired records,

2. Build updated records following in storage,
3. Test and write all the records,

4. If error code 7 occurs, repeat from step 1.

Error code 7 occurs only if, during step 2, another process updated the same records.
When such conflicts are infrequent, this service is more efficient than Lock and Unlock
Record (42 and 43).

The service is subject to most of the error codes that can result from Direct Read
(33) and Direct Write (34); see Summary of Error Codes.

Related requests: Direct Read (33), Direct Write (34), Lock Record (42), Unlock Record
(43).

Test and Write Record (MP/M 2) BDOS 41

A
BC: 29h
DE: }feb
HL:
0 1 a A ... B c D E F
fcb: dr ' filename [filetvpe] ex , st I $2 '

. ..odata map ...

or address ‘

The BDOS performs a direct read, as for service 33, into a private buffer. It
compares the record with that in the current file buffer. If the records are not equal, the
service returns 07h in register A and ends. If they are equal, the BDOS performs a direct
write as for service 34, taking the data from a position following the comparison record.

If Set Record Count (44) has been used, up to 16 consecutive records are compared
with as many adjacent records in the file buffer. If all comparisons are equal, all tested
records are updated from adjacent records following the comparison records.

No other process is allowed to access the file while the service is underway. Errors
other than unequal compare are reported as for services 33 and 34; see Summary of Error
Codes.

503

504

This service allows several simultaneous processes to operate on the same file
without loss of data. Each must open the file unlocked, then proceed thus:

1. Decide what records are needed.
2. Lock them.

3. Read, alter, and write the records.
4. Unlock them.

Test and Write Record (41) is more efficient when conflicts are infrequent. This service
is dangerous: if step 3 takes too long (if it includes a wait for terminal 1/0, for instance),
or if a bug prevents step 4 from being done, the other processes could be hung up
indefinitely.

The service is subject to most of the errors that can occur with Direct Read (33); see
Summary of Error Codes.

Related requests: Test and Write Record (41), Unlock Record (43).

See Lock Record (42) for the use of this service. It is not necessary to unlock the
identical set of records that were locked by service 42; more or fewer records can be
unlocked, although doing so has obvious possibilities for program error.

The service is subject to most of the error codes that can occur in Direct Read (33);
see Summary of Error Codes.

Related requests: Test and Write Record (41), Lock Record (42).

Lock Record (MP/M 2) BDOS 42

A
BC: 2Ah
DE: 4 feb
HL:
1] 1 —— 9 A ... B Cc D E F
feb: dr] filename . [filetvpe I X | sf | 52 |
oo data map ..

The record address specifies a record to be locked. The File ID returned when the
file was opened or made must be given in bytes 0...1 of the current file buffer. If the
specified record has not been allocated to the file, or if it exists but has been locked by
another process, the service ends with an error code. Otherwise the record is locked; any
other process attempting to access it will receive an error code until it is unlocked.

If Set Record Count (44) has been used, up to 16 consecutive records are inspected. BDOS 43
If all exist and are unlocked, all are locked.

If the file was opened locked or read-only, the service does nothing and does not
validate the File ID.

Unlock Record (MP/M 2)

A
BC: 2Bh
DE: § feb
HL:
0 1 T 9 A ... B c D E F
fch: dr ‘ filemane . . | filetype J ex s | 52 '
...datamap. ..
l address |

The record address specifies a record to be unlocked. The File 1D returned when the
file was opened or made must be given in bytes 0...1 of the current file buffer. If the
specified record exists and has been locked by this process, it is unlocked.
If Set Record Count (44) has been used, up to 16 consecutive records can be
unlocked.
The service ignores records that do not exist, records that are not locked, and
records that are locked by another process. If the file was opened locked or read-only, the
service does nothing, and does not validate the File ID. 505

506

It is common practice to read or write records in blocks to avoid excessive disk
activity. This service allows sequential (but not direct) reads and writes to access a block
of up to 16 records (2048 bytes) in one service request. The amount of system overhead
will be less than that incurred by a programmed loop, since fewer dispatch cycles are
needed.

When this service is used with one file but not another, or for locking but not for
accessing, there is a clear chance of error. Since the record count will usually change
when the file buffer address does, it might be wise to put both services in a single
subroutine.

Related request: Set File Buffer Address (26).

With this service a program can intercept a serious error and either correct it or
terminate in an orderly way. This is especially important when files are protected by

passwords. A password mismatch will cancel the program unless extended error mode is
on.

Related requests: none.

Set Record Count (MP/M 2)

A:
BC: 2Ch
DE: votnt
HL:

If the count in register E is not in the range of 1...16, FFh is returned in register A.
If the count is in range, it is set as a repetition count for the following services:

20 Sequential Read 42 Lock Record
21 Sequential Write 43 Unlock Record
41 Test and Write Record

These services normally operate on single records. When the count is set higher than 1
they repeat for consecutive records until the total reaches the record count. When a
repeated operation is interrupted by end of file or an error, the count of successful
iterations is returned in the most significant 4 bits of register H.

Set Error Mode (MP/M 2)

A

BC: 2Dh
BDE: flag
HL:

If flag is FEh or FFh, the BDOS will no longer trap serious disk I/0O errors but will
return them to the calling program as FFh in register A and a code in the least significant
4 bits of register H. The services affected are

14 Select Disk 41 Test and Write Record
20 Sequential Read 42 Lock Record

21 Sequential Write 43 Unlock Record

33 Direct Read 46 Get Disk Free Space
34 Direct Write 48 Flush Buffers

35 Get File Size 100 Write Directory Label
38 Access Drive 102 Read XFCB

40 Direct Write Zero 103 Write XFCB

If flag is FEh, the BDOS will continue to display its usual Bdos Err messages when an
error occurs; if flag is FFh the BDOS will not display a message when an error occurs.

If flag is O0h, the BDOS reverts to normal; a serious error will terminate the
program and a Bdos Err message will be displayed to the user.

BDOS 44

BDOS 45

507

Prior to MP/M 2 a program could discover this information, but only by referring to
the Disk Parameter Block (DPB) and the allocation vector for the drive.

The maximum value that could be returned is 4,194,303 decimal or 3F,FF ,FFh:
the maximum disk capacity (536,870,912 bytes) divided by 128. The value shows the
number of records that could be added to any one file. If the third byte exceeds 03h, then
there is room for a file of the maximum size (32 MB).

Related requests: Get Allocation Vector (27), Get Disk Parameters (31).

This service allows a program to end and pass control to a command. “Chain™
usually implies changing programs while retaining storage variables and open files. In

this case the program terminates completely, controlling only the command that follows
it.

Related request: Terminate Program (0).

508

Get Disk Free Space (MP/M 2)

A
BC: 2Eh
DE: drive
HL:

Register E contains a number in the range 0...15, signifying a drive from A...P
respectively. If the drive has not been selected since the disk system was initialized, it is
selected. The BDOS counts the free allocation blocks on the drive, multiplies by the
number of 128-byte records in a block, and returns the count as a 3-byte binary integer.
The number is returned in bytes 0...2 of the current file buffer in the form of a direct file
address; that is, byte O is the least significant and byte 2 is the most significant.

Chain to Command (MP/M 2)

BC: 2Fh

DE:

HL:

file buffer: | command | 00h }

The current file buffer must contain a character string that the system will treat as if
it were a command typed by the user. The command will be executed next, even if a
submit file is active.

The command string may be from 1 to 100 bytes in length and must be followed by a
byte of 00h (which is not counted in the length).

Ordinarily control will not be returned to the program; it will be ended as for service
0. If the process is not attached to its console, control will return.

BDOS 46

BDOS 47

509

Some BIOSes manage large storage buffers. A BIOS of proper design will never
delay writing changed data for very long. However, the most recent program output may
be retained for some time, especially when direct access is being used. This request
allows the program to ensure that the data it has written has actually been put on the disk.
Its real application is in large MP/M systems, especially those that keep a large disk
cache and use fixed-media disks. The service, in combination with the temporary close
feature of service 16, allows a long-running program like a CP/NET server to take
periodic disk checkpoints, thus assuring file integrity.

Related request: Close Output File (16).

This request provides the only way for a CP/M-86 program to call on a BIOS
function. The address of the BIOS entry table is not placed in low storage in CP/M-86;
there is no way for a program to discover its address. The BDOS must intervene to set the
various segment registers correctly for BIOS execution before the BIOS is entered.

The BDOS does not censor BIOS requests made with this service; all the functions
of the BIOS are still available to programs that need them.

Related requests: none.

510

Flush Disk Buffers (MP/M 2) BDOS 48

A

BC: 30h

DE:

HL:

The BDOS calls on the BIOS to write any output disk records it may be holding in
internal buffers. If the BIOS buffers large disk sectors, or if it keeps a cache of disk
sectors, it will write the data to disk. If the BIOS doesn't buffer data, nothing happens.

Call BIOS Entry (CP/M-86 only)

AX:

BX:

CX: 0032h
DX: ' parameters

p.'n".:rnclurr::J fire ‘ CX value ! DX value l

The BDOS loads the 16-bit values given in the parameter list into the CX and DX
registers and enters the BIOS at the function entry indicated. The 8-bit fic value is an
offset into the BIOS entry table, with fuc = 0 corresponding to the first (cold start) entry,
~ fnc = 3 corresponding to the second (warm start) entry, and so on.
The registers are returned as the BIOS set them. 511

512

When a program is initialized. the file buffer segment address is set identical to the
data segment address in the program’s DS register, and the file buffer offset address is
set to 0080h. This conforms to the conventions of CP/M and MP/M, where the default
buffer is at 0080h in (the only segment of) working storage.

The Set File Buffer Address (26) request alters only the buffer offset in CP/M-86;
that request can be used to place the buffer anywhere in the Data Segment but not
elsewhere. This request allows the file buffer to be located in the program’s Code, Stack,
or Extra Segments.

Related request: Set File Buffer Address (26).

This request can be used to find and save the current file buffer address before
setting another, temporary one. There is no comparable request in CP/M or MP/M.

Related requests: Set File Buffer Address (26), Set File Buffer Segment Base (51).

Set File Buffer Segment Base (CP/M-86 only) BDOS 51

AX: R e e s
BX:

() & 0033h

DX: segment base adr.

The address in the DX register is saved as the segment base for the file record buffer
whose offset is set by Set File Buffer Address (26). The address is taken to be a paragraph
address, the most significant 16 bits of a 20-bit address.

BDOS 52

Get File Buffer Address (CP/M-86 only)

AX:

BX:

CX: 0034h

DX:

The complete address of the active file buffer is returned. The segment address is
returned in the ES register and the offset address in the BX register. 513

This request acquires a large area of storage that the program will subdivide
according to its own rules. Note that a program loaded according to the CP/M-86 rules
for the Compact Model can have as many as six storage areas allocated for it when it is
loaded.

Use Relocatable Storage (55) when an area of a specific size is needed. Use
Absolute Storage (56) or Maximum Absolute Storage when an area at a specific address
is required.

Related requests: Relocatable Storage (55), Release Storage (57).

This request acquires a large area of storage at a specific storage address. To do so
implies some hardware dependency, as the program must know that the address is
defined in this machine. To get an area of a particular size at an absolute address (for
example, the area that defines a memory-mapped display), use Absolute Storage (56).

Related requests: Absolute Storage (56), Release Storage (57).

514

Maximum Relocatable Storage (CP/M-86 only) BDOS 53

AX:

BX:

CX: 0035h

DX: ‘f meh

bytes: 0 1 2 3 4
mcb:| base | length] flg]

This request asks the BDOS to provide the largest area of contiguous storage
available. The BDOS sets the paragraph address of the storage area in the first 2 bytes of
the MCB, and the length (in paragraph, or 16-byte, units) in the second 2 bytes. If no
storage areas are available, FFh is returned in the AL register, otherwise 00h is returned.

If there are other storage areas that could be allocated, the flag field is set to 01h. If
this is the last area, it is set to O0h.

BDOS 54

Maximum Absolute Storage (CP/M-86 only)

AX:

BX:

CX: 0036h

DX: T meh

bytes: 0 1 2 3 4
mcb:| base l length I flg ‘

This request asks the BDOS to provide the largest area of contiguous storage
available at a specific storage address. The paragraph address required must be passed in
the first 2 bytes of the MCB. The length available (in paragraph, or 16-byte, units) is
returned in the length field. If the address requested doesn’t exist or falls in an area
already allocated to some other use, FFh is returned in the AL register; otherwise 00h is
returned.
If there are other storage areas that could be allocated, the flag field is set to 01h. If
this is the last area, it is set to 00h. 515

Use this request to acquire a block of storage of some known size: a file buffer,
perhaps, or space for a table or array of known size. Note that a program loaded
according to the CP/M-86 rules for the Compact Model can have as many as six storage
areas allocated for it when it is loaded.

Use Maximum Relocatable Storage (53) when an area of the largest possible size is
needed. Use Absolute Storage (56) or Maximum Absolute Storage when an area at a
specific address is required.

Related requests: Maximum Relocatable Storage (53). Release Storage (57).

This request acquires a specific area of storage at a specific storage address: perhaps
a section of storage that is mapped by some hardware device such as a memory-mapped
display. Using this or the Maximum Absolute Storage request (54) implies a hardware
dependency. Use Relocatable Storage (55) when the storage address doesn’t matter.

Related requests: Maximum Absolute Storage (56), Release Storage (57).

516

Relocatable Storage (CP/M-86 only)

AX:

BX:

CX: 0037h

DX: t mch

bytes: 0 1 2 3

4 -
mch L Dase [fength J il _i

This request asks the BDOS to provide an area of contiguous storage of a specified
length. The length needed must be passed as a number of paragraph (16-byte) units in the
second 2 bytes of the MCB. The BDOS sets the paragraph address of the storage area in
the first 2 bytes of the MCB. If no storage area of the size requested is available. FFh is
returned in the AL register; otherwise 00h is returned.

If there are other storage areas that could be allocated, the flag field is set to 01h. If
this is the last area, it is set to 00h.

Absolute Storage

AX:

BX:

CX: 0038h

DX: t meb

bytes 0 1 2 3 4

mch: basy | length [fig J

This request asks the BDOS to provide a certain amount of contiguous storage at a
specific storage address. The paragraph address required must be passed in the first 2
bytes of the MCB and the length required (in paragraph, or 16-byte, units) in the second
2 bytes, If the address requested doesn’t exist or falls in an area already allocated to some
other use, orif the length requested isn’t available following it, FFh is returned in the AL
register; otherwise 00h is returned.

If there are other storage areas that could be allocated, the flag field is set to 01h. If
this is the last area, it is set to 00h.

BDOS 55

BDOS 56

517

The storage released must have been obtained by one of the allocation requests
(53-56). Storage allocated as part of the program load should not be released.

When a single area is released, the area may be identical to an area obtained with an
allocation request, or may be the low end (base = allocated address) or high end (base +
length = allocation end) of an allocation. The middle part of an allocation may not be
released alone.

A released area is available for later allocation.

Related requests: Maximum Relocatable Storage (53), Relocatable Storage (55), Max-
imum Absolute Storage (54), Absolute Storage (56).

This request is meant for the use of the CCP; it is included here only for the sake of
completeness. It is impossible to predict what would happen if a command program
issued this request, but it wouldn’t be anything good.

Related requests: none.

518

Release Storage (CP/M-86 only) BDOS 57

AX: -
BX:

CX: 0039

DX: t meb

bytes: 0 1 2 3 4

mcb: | base J length ! _.fF_L'—f

The storage area whose paragraph base address is given in the MCB is released for
other uses.

If flg = FFh, then all storage allocated by preceding requests is released. In this
case the base and lengrh values are ignored.

If flg = 00h, the area described by base and length is released. This area must be a
complete area as allocated by a previous request, or must be adjacent to one end of such
an area.

BDOS 58

Release All Storage (CP/M-86 only)

AX:

BX:

CX: 003Ah

DX:

All storage areas in the machine (except the space occupied by the BDOS, BIOS,
and CCP) are released. 519

520

After loading a program you can examine the first bytes of its data segment (via the
base address in register BX) to discover which program model (8080, Small, or
Compact) it uses and the addresses of its various storage segments.

In order to call the loaded program you must find its entry point. The base address of
the program’s code segment appears at offset 0001h in its data segment. If the program
was built on the 8080 model, the byte at 0003h in its data segment will be nonzero. In
that case the program’s code segment and data segment are identical, and the program
should be entered at offset 0100h. Programs built on the other models should be entered
at the beginning of their code segments.

The default FCB in the new program’s base page has not been initialized, nor has
the default file buffer address set for it. If the program will expect these things to have
been done, the loading program must do them before calling it.

Related requests: none.

The name and type fields serve only as user identification; they can be displayed
with the SHOW command but a program can read them only with the Search requests
(17, 18).

The flg settings are very important for file processing. If bit 7 is 0, passwords can be
supplied for files but will never be checked: if it is I, then a password may be required
whenever a file is opened, deleted, renamed, or has its attributes changed.

If bit 4 is 1, then an XFCB will be created whenever a file is made. That consumes
an extra directory entry for every new file.

A return code of FFh will usually indicate that the directory is full and so a label
could not be created. If extended error mode has been set (service 45), FFh in register A
will be accompanied by a code in register H.

Related request: Get Directory Data (101).

Load Program (CP/M-86 only)

AX:
BX:
CX: 003Bh
DX: § fcb
—

Register DX specifies the offset of a file control block in the data segment. The
FCB, which must have been opened, names a file of type .CMD. The BDOS loads the
program, allocating segments of storage as required. Register AL contains 00h if the
load is successful, and register BX contains the segment base of the loaded program’s
data segment.

If the file cannot be read, or doesn’t contain a valid header record, the load is not
done and FFh is returned in register AL.

Write Directory Label (MP/M 2)

A
BC; 64h
- DE }ich
HL:
0 1 s B A ... B C D E F
feb: dr filename filetype J flg l 1 ’

The drivecode, if not zero, is used to select a drive. The Directory Label of that disk
is created or updated. The filename and filetype fields provide user identification for the
disk. The bits of fIg establish the handling of passwords and XFCBs:

Bit 7 = 1: Enforce file password protection.

Bit 6 = 1: Timestamp an XFCB when its file is opened.
Bit 5 = 1: Timestamp an XFCB when its file is closed.

Bit 4 = 1: Create an XFCB during Make File (22).

Bit 0 = I: Assign a (new) password to the Directory Label.

If the current label has a password it is checked. The password may be given in
bytes 0...7 of the current file buffer, or previously through Set Password (106). If flg bit
) is set, the new password must be in bytes 8..15 of the file buffer.

If the directory label is created or updated successfully, 0, 1, 2, or 3 is returned in
register A, otherwise FFh is returned.

BDOS 59

BDOS 100

521

522

Check bit 7 to find out if a password may be required when a file is opened, deleted,
renamed, or has its attributes changed. If so, you can check the file’s XFCB to see if the
file has a password.

Check Bit 0 to see if a label entry exists at all. If one does, then service 100 may
require a password.

If extended error codes have been set on (service 45), register A is returned as FFh
when a physical error occurs.

Related request: Write Directory Label (100).

The timestamps may not be accurate. Timestamping is controlled by the Directory
Label. Depending on the setting of bits in the label the BDOS may update only open
times, only close times, neither, or both.

Password enforcement is also controlled by the Directory Label. If it specifies
password checking, then this file’s password will be checked on the operations indicated
by flg. It is possible for all three flg bits to be 0; in that case the file may have a password
but it will not be checked.

Related requests: Read Directory Data (101), Write XFCB (103).

BDOS 101

Get Directory Data (MP/M 2)

N =E
BC _5_5,'1
DE drive
HL J

Register E contains a number from 0...15, signifying drive A...P respectively. If
the drive has not been selected since the disk system was initialized, it is selected. If the
directory contains no label entry, 00h is returned in register A. Otherwise the Directory
Label flag byte is returned:

Bit 7 = 1: Passwords are checked for files that have them.
Bit 6 = I: An XFCB is timestamped when its file is opened.
Bit 5 = I: An XFCB is timestamped when its file is closed.
Bit 4 = 1: An XFCB is created whenever a file is made.

Bit 0 = I: A Directory Label exists on the drive.

BDOS 102

Read XFCB (MP/M 2) ot
A
BC: [) B6h
DE: f fch
HL:
0 1 ’ 8 9 . B c D E F

fch: 7]] filenaie ! filet i pre e ‘ l [

L ‘ open limu.\;l:u:;)_ l close timestamp

The drivecode, if not zero, is used to select a drive. The BDOS searches for the
given fileref (which must be explicit). If it is not found, or if the file has no XFCB., FFh is
returned in register A. If a matching XFCB is found, its fields are returned in the given
FCB. The open timestamp in bytes 18h...1Bh marks the last time the file was opened in
any mode; the close timestamp in 1Ch... 1Fh marks the time the file was last closed after
output. The flg field controls password enforcement for this file. Passwords are checked
on these operations:

Bit 7 = I: Read-only open, plus...
Bit 6 = I: Locked and unlocked opens, plus...
Bit 5 = 1: Delete, rename, and attribute change. 523

Only one of fIg bits 7, 6, and 5 should be set. If none of them are set but bit O is 1, the =

file will be given a new password but it will be disabled. The new password can be
enabled at a later time by updating the XFCB again.

Related requests: Read XFCB (102), Read Directory Data (101).

The system maintains the time and date mainly for use in timestamping XFCBs.
The current time can be obtained with Get Date and Time (105).

Related request: Get Date and Time (105).

524

Write XFCB (MP/M 2)

Al
BC: 67h
DE: A“ch
HL:
0 1 . 9 A .. B C D E F
feh: wl N filemain fileivpe [e ‘ l]

The drivecode, if not zero, is used to select a drive. The BDOS searches for the
given fileref (which must be explicit). If there is no Directory Label, or if the file does not
exist, or if there is no directory space to create an XFCB, FFh is returned in register A,

If an XFCB exists and calls for password checking, the password is checked against
the one in bytes 0...7 of the current file buffer. If no XFCB exists, the BDOS creates one.
Then bits 7, 6, and 5 of fIg are copied to the XFCB; they control password application:

Bit 7 = 1: Check on read-only open, plus...
Bit 6 = 1: Check on any open, plus...

Bit 5 = 1: Check on delete, rename, and set attribute

If flg bit O is 1, then a new password is taken from bytes 8...15 of the current file
buffer.

Set Date and Time (MP/M 2)

Al

BC: 68h

DE: 1\]1t[:|

HL:

by tes: 0 1 2 3

t|;|[;;|:| date] Il 1 nin —’

The system’s clock and calendar are set. The date value is a 16-bit integer, a count
of days since 1 January, 1978; that is, date would have been 0001h during that day,
turning to 0002h at 00:00:00 hours, 2 January, 1978.

The hh and mm bytes represent the hour and minute, respectively, in Binary Coded
Decimal (BCD).

BDOS 103

BDOS 104

325

Note that the sign bit of date will be 0 until 2066 A.D. Therefore a date prior to 1978
may safely be constructed by subtraction, with dates back to 1880 being represented by
negative numbers.

Related request: Set Date and Time (104).

If the password string is shorter than 8 bytes, it should be left-justified in the field
and padded with blanks.
If the user has set a default password, it will be replaced.

Related requests: none.

526

Get Date and Time (MP/M 2) BDOS 105

A

BC: 69h

DE: 'Id:it:r

HL:

bytes:] 1 2 3
(l[ll-‘l| date ‘ Il | mm |

The system’s clock and calendar values are returned in a 4-byte field in storage. The
hh and mm values represent the current hour and minute in Binary Coded Decimal
(BCD).

The date value is a 16-bit binary integer that is a count of days since 1 January,

1978. That is, date would have been 0001h on that date, 0002h the next. and so on.

BDOS 106

Set Password (MP/M 2)

Al

BC: 6AhR

DE: t password

HL:

bytes: 0 1 2 T i

password: | characters . . .]

Register DE addresses an 8-byte character string that can be used as a password in
subsequent file services. The string is set as the default password. Each time a file
service requires a password check the BDOS will test the 8 bytes at the then-current file
buffer address. If that test fails, it will try the default password before reporting a
password error.
' The default password remains in force until another one is specified or until a cold
start is done. 527

Topical Summary of CP/NET NDOS

Services
Req.
No. Page Service Performed Argument
64 533 Login to a master system DE—login msg
65 533 Logout from a master system E = master id
66 535 Send message DE—message
67 535 Receive message DE—buffer
68 537 Get network status byte E = master id
69 537 Get configuration table none

531

If a login request fails, it might be that the master processor rejected it, or that the
master couldn’t be contacted or didn’t respond. Use Get Network Status (68) to find out
if a send or receive error occurred.

It is not clear what will happen if two login requests are issued in succession to the
same master. The second request might be rejected, or it might be accepted and ignored.

If this processor is connected to more than one master, or if the program wants to
log in through the local master to a processor in some higher layer of the network, the
master id must be given explicitly.

Related request: Logout from Network (65).

If a logout request fails, it may be that the master processor didn't recognize the
source processor id. This could occur if this processor had never successfully logged in
to that master, or if the master had crashed and been restarted since the login took place.
Use Get Network Status (68) to find out if a transmission error took place.

Related request: Login to Network (64).

532

Login to Network

BC: 40h

DE: 1 log-in msg

HL:

0 1 2 . vaw
log-in msg: r i [password . . .

The message addressed by the DE register pair is transmitted to the master
processor indicated by id. If the master is active, can accept a login, and finds the
password correct, this processor is logged in as a slave processor. It may then use the
master for 1/O.

A value of 00h is returned in register A if the login is accepted by the master
processor. FFh is returned if the login is not successful.

An id of 00h specifies the only master processor to which this processor is directly
connected.

Logout from Network

Al

BC: 41h
DE: id
HL:

A logout message is sent to the master processor indicated by id. If that processor
can be contacted, and recognizes the source processor id, it will free any resources it
holds for this processor.

A value of 00h is returned in register A if the logout succeeds. If not, FFh is
returned.

A processor id of 00h specifies the only master to which this processor is directly
connected.

NDOS 64

NDOS 65

533

534

The great bulk of network messages relate to redirected 1/O; these are produced by
the NDOS as a result of /O service requests. This request allows a program to send a
message for some other reason.

One use of this request is to send a message to a processor elsewhere in the network.
The message will have the Send Message on Network format. After sending such a
message, execute a Receive Message request (67) to get the master processor’s return
code.

To receive a message from a processor elsewhere in the network, use this request to
send a Receive Message from Network format to the master processor, then use Receive
Message (67) to get the message.

Related request: Receive Message (67).

Don’t confuse this service request with the CP/NET message format of the same
name. The service causes this processor to receive a transmission from the master
processor to which it is directly connected.

When a network message is sent (Send Message on Network format, transmitted to
the master with a Send Message (66) request). this service should be requested im-
mediately afterward. The message that is received will be the master processor’s
response, indicating whether it was able to handle the network message.

In order to receive a message from another processor elsewhere in the network,
transmit a Receive Message from Network format to the master processor (using a Send
Message (66) request), then issue this request. The resulting message, if it contains siz
greater than 1, is from the network.

Related request: Send Message (66).

NDOS 66

Send Message

A
BC: 42h
DE: T message
HL:
0 1 2 3 4 5
MESSaEe: fat |u'n'! [sid | fine i viz I contents . . .

The CP/NET message addressed by the DE register pair is transmitted on the
network. The calling program is suspended until the entire message has been transmit-
ted. The message must contain a complete message header. Any type and format of
CP/NET message may be sent in this way.

Receive Message

A
BC: 43h
DE: I buffer
HL:
0 1 2 3 4 5 ...
buffer: | fmt |ﬂ’."r.’ | sid J fue ‘ §iz I results. . . J

The next message from the master processor will be placed, exactly as received, in
the buffer. The calling program is suspended until a message is received. No length
check can be made; the program must provide a buffer large enough to contain the

message. 535

536

This request can be used to distinguish between a logical and a physical error: that
is, between a message that was rejected by the master processor and one that couldn’t be
sent.

The request returns the status byte kept by the SNIOS in this system. Don’t confuse
it with the Get Network Status message format. A message in that format would be sent
to a master system using Send Message (66). The master’s response, obtained with
Receive Message (67), would contain the master’s status byte, with a different bit
layout.

Related requests: none.

Examine the configuration table to find out if VO for a particular disk drive or
logical device is travelling over the network. Network disk I/O is likely to be slower than
local disk I/0. This is not usually important, but a few programs may depend on disk
speed. For instance, a program that reads from a device prone to overrun (such as a
streaming tape drive) might not work when its output was to a remote disk file.

L

Get Network Status

A

EC B 44h
DE: o id
HL:

This processor’s status relative to the master whose id is in register E is returned in
register A. The format of the network status byte is

bit numbers: 7 [5 4 3 2 1 0

[T [[wl T Twle]

where [og indicates that this processor has logged in to the master, rcv indicates that a
receive error has occurred, and snd indicates a send error. The two error bits are reset
when the request is made. hence they reflect errors only since the last request.

Get Configuration Table

A:

BC 45h

DE

HL:

The address of this processor’s network configuration table is returned in the HL
register pair. The configuration table layout is shown in the CP/M Maps section. The
table defines which logical devices are having their /O redirected to the network.

NDOS 68

NDOS 69

537

Topical Summary of BIOS Entry Points

Entry Page
No.
0 543
| 543
14 551
11 549
16 553
17 553
18 555
19 555
2 543
3 545
1 543
4 545
14 551
5 545
6 547
7 547
8 547
9 549
15 553
10 549
12 551
13 551
11 549
16 553

Service Performed

Argument

System Information and Control

Initialize (warm boot)
Console status

List status

Set file buffer address

Set file buffer segment base
Return region table

Return current IOBYTE
Set new IOBYTE

none
none

none
BC—buffer
CX = segment
none

none

CL = IOBYTE

Serial Input and Output

Console input
Console output
Console status
List output
List status
Punch output
Reader input

none

C = byte
none

C = byte
none

C = byte
none

Disk Drive Operations

Home drive (set track 0)
Select drive

Set track

Translate record number
Set record number

Read record to buffer
Write record from buffer
Set file buffer address

Set file buffer segment base

none

C = drive

BC = track
BC = record
BC = record
none

C = type code
BC—buffer
CX = segment

Valid Systems

-80 -86 MP/M
X X X
X X X
X X X
X X X
: X 3
s X =
: X o=
= X

X X X
X X X
X X X
X X X
X X X
X X

X X -
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
- X -

541

Under CP/M and MP/M this function entry is directly addressed by the jump
instruction at location 00h. The address in that instruction may be used as the base
address of the BIOS entry table. Under CP/M-86 the BIOS is called by way of BDOS
service 50; there is no jump instruction in low storage.

In all systems BDOS service request 0, Terminate Program. has the same effect as
BIOS function 0. It is traditional for CP/M programs to end with a “jump to boot,” (JMP
0). The BIOS entry is difficult to get to under CP/M-86. For best compatibility with all
versions of the system, use the BDOS service request.

This function duplicates that of BDOS service request 11. —

The value returned in register A is specified to be either FFh or 00h. The Z flag will
usually reflect the value in the register, but this depends on the code of the BIOS and
should not be relied on.

Under MP/M the number of the console assigned to the process can be obtained
with Get Console Number, XDOS service request 153.

This function duplicates that of BDOS service 6 for input. It can be used in place of
BDOS service 1. but it bypasses all monitor functions. If CP/NET is present, the NDOS
is bypassed; console I/O cannot be redirected to a network location. If DESPOOL is
active, it cannot get control to test the printer status. The BDOS will not be able to echo
the input byte to the terminal screen (or to the printer, if control-p has been pressed).
Under MP/M the number of the console assigned to the process can be obtained
with Get Console Number, XDOS service request 153. Under MP/M the most signifi-
cant bit of the first byte of the process name in the Process Descriptor should be setto 1 —
542 when this BIOS call is to be used.

WBOOT

The calling program is terminated and the system is initialized.

Under CP/M 1 and 2 the code of the CCP and BDOS is refreshed from the reserved
tracks of the A-drive disk and low storage is initialized. The CCP selects the A-drive. If a
file $$3.SUB exists, the next command is taken from it; else the user is prompted for a
command.

Under MP/M this function simply performs BDOS service request 0, Terminate
Program. All resources owned by the calling program are freed, the storage it occupied is
made available, and control of the terminal is returned to the CLI.

CONST

The status of the console device is sampled. A nonzero value is returned in register
A if a character is ready for input, otherwise 00h is returned.
Under MP/M register D must contain the number of the console device to be tested.

CONIN

The next character is read from the console device. The calling program is
suspended until a character is available. The parity bit (bit 7) of the character is set to
zero, and the resulting byte is returned in the A register.

In MP/M the number of the console device must be passed in register D.

543

This function duplicates that of BDOS service 6 for output. It can be used in place of
BDOS service 2, but all monitor functions are bypassed. If CP/NET is present, the
NDOS is bypassed; console output cannot be redirected to a network location. Console
output will not be duplicated at the printer if control-p has been pressed.

Under MP/M the number of the console assigned to the process can be obtained
with Get Console Number, XDOS service request 153.

This function duplicates that of BDOS service request 5 except that if CP/NET is —
present, the NDOS is bypassed; list output cannot be directed to a network location.
Under MP/M the MXIlist mutual exclusion queue should be obtained before writing

to the list device.

This function duplicates that of BDOS service request 4.

544

CONOUT

The character in register C (CL for CP/M-86) is sent to the console device. The
BIOS assumes that the parity bit (bit 7) has been set to zero. The calling program is
suspended until the character has been transmitted.

Under MP/M, register D must contain the console number for the operation.

LIST

- The character in register C (CL for CP/M-86) is transmitted to the logical list
device. The BIOS assumes that the parity bit (bit 7) has been set to zero. The calling
program is suspended until the character has been sent.

PUNCH

The character in register C (CL for CP/M-86) is sent to the logical punch device.
The BIOS assumes that the parity bit (bit 7) of the character has been set to zero. The
calling program is suspended until the character has been sent.
= This BIOS entry performs no function under MP/M; it consists of a return instruc-
tion only.

545

This function duplicates that of BDOS service request 3,

This function is effectively the same as a call on SETTRK (9) with a track number
of zero.

The main reason for calling this BIOS function from a command program is to
obtain the address of the Disk Parameter Header. The DPH contains the address of the
skew translation table for the selected drive, which is needed as an input to the
SECTRAN function (15).

The BDOS keeps track of the drive it thinks it has selected. It is not wise to call the
BIOS to select a drive without first calling on the BDOS (via service 14) to select the
same drive. If this is not done, the BDOS will be out of step: false disk error messages, or
worse failures, may occur.

Some CP/M and all MP/M BIOSes use register E bit 0 to determine if a diskette may
have been changed. If they receive a 0-bit, indicating that this is the first select since the
disk system was reset, they may sense the media for density and sector size. If they
receive a 1-bit, they may assume that the disk cannot have been changed and so still has
the same format.

The best sequence of operations to cope with all these considerations is (1) call
BDOS service 13 if you want the BIOS to sense the media, (2) call BDOS service 14t0

546 select the drive, and (3) call the BIOS to get the DPH address.

READER

The next character from the logical reader device is returned in register A (AL for
CP/M-86). The calling program is suspended until the character is ready. The parity bit
(bit 7) will be set to zero.

Under MP/M this BIOS entry has no function; it consists of a return instruction
only.

HOME DISK

The read-write head of the disk last selected by the SELDSK (8) function will be
moved to track zero (the outermost track). Whether the head is moved immediately
depends on the drive hardware and the code of the BIOS: disk motion is usually deferred
until a READ or WRITE call occurs.

Ifthe head is moved immediately, the program may or may not be suspended until it
reaches track zero. In some systems (especially MP/M) the BIOS disk code may initiate
the operation and return, relying on a hardware interrupt to signal that the motion is
complete.

SELDSK

The disk drive specified by the drive number in register C (CL for CP/M-86) is
selected for further operations. The drive number must be in the range of 0...15,
signifying drives A...P respectively.

Under MP/M and some CP/M systems, the least significant bit of register E (DL in
CP/M-86) is a signal to the BIOS: O says that this is the first time the disk has been
selected; | says that it was selected previously since it was reset.

The address of the Disk Parameter Header for the selected drive is returned in the
HL register pair (BX and ES for CP/M-86). If the drive number is not valid for this
system, or if an /O error occurs while selecting the drive, 0000h is returned to indicate
the error.

547

548

Information in the Disk Parameter Block (DPB) can be used to calculate the first
and last track numbers of a drive while avoiding hardware dependencies. The address of
the DPB can be obtained through BDOS service 31. See Chapter 14 for a discussion of its
use.

The track number passed in BC is a physical track number. A request for track zero
is a request for the outermost track on the physical drive. The first track containing data is
the track whose number appears as the track offset value in the DPB. The disk directory
appears in the first logical records of that track. 1f the track offset is zero, or larger than 3,
the drive is likely to be a logical drive, part of a hard disk.

If the drive is a double-sided diskette or a hard disk with multiple heads. the BIOS
will translate the track number into a eylinder number and a side (or head) number.

When the disk involved actually uses 128-byte sectors, the record number is also a
physical sector number. On other disks the BIOS determines the relation between the
record number and the sector that contains it. The calling program need not be aware of
the size of a physical sector, only of the number of standard records per track. The
maximum record number can be found in the Disk Parameter Block (DPB). obtainable
through BDOS service request 31.

The record number passed is a physical record number stating the position of the
record on the track. If skew translation is used on the selected disk, the number given
must be the one returned from a SECTRAN (entry 15) call.

Under CP/M-86 this function sets the segment offset of the file buffer: the segment
base address is set with function 16.

The BDOS keeps track of the buffer it thinks it has selected. The BDOS selects
either the buffer named in the most recent service 26 or, during drive selection and
directory scan operations, its own directory buffer. To avoid conflict with the BDOS use
BDOS service requests to select the drive and the initial buffer address. Then request no
file services from the BDOS until your BIOS work is complete.

SETTRK

The track number given in the BC register pair (CX for CP/M-86) is established as
the track for the next operation on the drive that has been selected by SELDSK (8).

Whether or not head motion is initiated at this time depends on the disk hardware
and the code of the BIOS; the seek may be deferred until it is required.

SETSEC

The standard record number in the BC register (CX for CP/M-86) is established as
the record to be read or written in the next call for disk 1/0. The record number is in the
range of | through the maximum number of standard records on a track. It should be the
result of skew translation by the SECTRAN entry.

Whether or not any disk operation is started at this time depends on the disk
hardware and the code of the BIOS. Sector selection may be deferred until the READ or
WRITE call occurs or, if the BIOS is buffering physical sectors, may not be needed at
all.

SETDMA

The address in the BC register pair (CX for CP/M-86) is set as the file buffer address
for the READ and WRITE calls that will follow.

549

550

Under CP/M the BIOS will usually defer all disk operations until a READ or
WRITE call occurs. Only then does it seek the desired track, search for the necessary
sector, and perform the I/O. If the BIOS buffers physical sectors, it may not need to do
any disk I/O at all.

Under CP/M the BIOS will usually defer all disk activity until a READ or WRITE
call occurs. Then it will seek to the track, select the sector, and perform the I/O. If the
BIOS buffers physical sectors, no disk activity may be needed.

It is essential to pass the sector buffering parameter under CP/M 2 and later
systems. There is no way to tell whether or not the BIOS supports sector buffering. If it
does, and if a parameter of 02h is passed by accident, the write may cause the destruction
of all the records in the allocation block except for the one being written.

Don’t place too much trust in the indication returned by this function. The BIOS
need not support it (although most do). If it does not, it should always return 00h.

When the BIOS does support the function, the returned value indicates whether or
not a program that calls for list output will be delayed. If the result is nonzero, a call for
list output should return very quickly. If 00h is returned, the program may be suspended
for some time before the output completes.

Calling LISTST is not a defense against printer overrun. If the printer isn’t
configured for handshaking, LISTST will only report the condition of the UART
transmit buffer. The transmission rate might still be too high for the printer to handle.

READ

The standard record selected by preceding SELDSK, SETTRK, and SETSEC calls
is read and placed in the buffer selected by the last SETDMA call. The calling program is
suspended until the record has been read.

If the read is successful 00h is returned in register A; if an error occurs, a nonzero
value is returned. The BIOS will retry an error several times. The number of retries, and
the technique used, depends on the hardware and on the code of the BIOS.

WRITE

The standard record in the buffer selected by the last SETDMA call is written to the
location selected by the preceding SELDSK, SETTRK, and SETSEC calls.

Register C (CL for CP/M-86) should contain an indication of the type of data being
written. This indicator directs the sector buffering algorithm of the BIOS, if one exists:

00h= Normal write: preread if necessary, defer write if convenient.

01h= Directory write: preread if necessary, do not defer writing.

02h = First write to this allocation block: no preread needed, write may
be deferred.

LISTST

The list logical device is polled. If it is ready to accept a character, a nonzero value
is returned in register A. If it is not ready for a character, 00h is returned.

351

Skew translation is not required on all drives. Use the SELDSK (8) function to
obtain the Disk Parameter Header. Its first word contains the table address to be passed in
DE., or 0000h if translation is not required. Do not call SECTRAN at all in the latter
case.

Do not assume that the address in the DPH points to a simple table of permuted
record numbers, one for each record on a track. All you can be sure of is that it points to
parameters needed by the SECTRAN function. These may not be a table at all but a few
numbers input to a greatest common divisor algorithm.

The segment base need only be set when it changes. The SETDMA entry (11) may
be called several times to set different buffers within the same segment.

The BDOS keeps track of the base and offset it last set as the file buffer. If you use
this call from a command program, the BDOS is put out of step with the BIOS. Use
BDOS service 52 to get the present value of the buffer segment base before changing it,
then restore it afterward.

The MRT contains a physical description of the system’s storage layout. The
BDOS keeps more elaborate information on the storage allocations it has made. The
MRT can be used to find the actual layout of storage, perhaps to find if a particular
address exists before requesting it in an Absolute Storage service request.

552

SECTRAN

The record number in the BC register pair is translated using the skew table
addressed by the DE register pair (CX and DX, respectively, for CP/M-86). The
translated record number is returned in the HL register pair (BX).

SETDMAB

(CP/M-86 only) The address in the CX register is set as the segment base of the file
buffer for subsequent reads and writes.

GETSEGT

(CP/M-86 only) The BIOS returns the address of the Memory Region Table (MRT)
in the BX register:

MRT: ‘ ent ‘ base | length | base 2 length2 ...

Each of the enr entries of the MRT describes an area of contiguous storage in the system.,
The storage reserved to 8086 interrupt vectors and the storage occupied by the CCP,
— BDOS, and BIOS are excluded. A system that has but one area of storage would have
only a single entry in its MRT. 553

This function duplicates that of BDOS service request 7. In CP/M-86 the BIOS
holds the IOBYTE in private storage, because there is no reliable low-storage location in
which to keep it.

This function duplicates that of BDOS service request 8. In CP/M-86 the BIOS holds the
IOBYTE in private storage, because there is no reliable low-storage location in which to
keep it.

554

GETIOB

(CP/M-86 only) The BIOS returns the present setting of the IOBYTE in register
AL.

SETIOB

(CP/M-86 only) The byte in the CL register is set as the current IOBYTE.

355

558

CP/M-80 Storage Map

Storage is divided into three areas. Low storage extends from 00h to FFh; Monitor

storage extends downward by approximately 9200 bytes, depending on the size of the
BIOS. The area between is the Transient Program Area.

Name

Contents

BIOS

BDOS

CCP

TPA

The system’s builder (the vendor or hobbyist) supplies this code to drive /O
devices under control of the BDOS. Its standard size is 600h bytes, but
many builders must expand it to EQOh, especially if disk sector buffering is
included.

This code operates the file system in response to service requests from the
CCP or command programs. Its size is EOOh bytes in version 2.

The Console Command Processor is loaded on a warm start and may be
overlaid by a command program. It gets a command from the console or a
submit file and processes it. The CCP executes DIR, REN, ERA, TYPE,
and SAVE itself, and loads the .COM files that represent other com-
mands. Its size is 800h bytes in version 2.

The size of the TPA depends on the size of storage and the size of the BIOS:
Storage size: 64K 48K 32K
Standard TPA: E300h (56K) A300h (40K) 6300h (24K)
Typical TPA: DBOOh (54K) 9BOOh (38K) 5B00h (22K)

Low storage is described on the following map.

-/

-

BIOS—device control code
standard size 600h, typical EOOh

BDOS - file system control,
SErvice requests
standard size EQOh

CCP—command interpreter
standard size 800h

TPA—space for command programs
standard size: storage less 1D00R
typical size: storage less 2500h

Default file buffer; command tail

System constants, default FCB, etc.

FFFFh ~

Cold

start

load
F200h =

Warm

> start
E400h load
DCOOh ~ -

0100h
0080h
0000h

559

560

Low Storage Map

Storage from 00h to FFh is an interface area, used for communication between CCP,
BIOS, BDOS, and command programs. Low storage is initialized by the BIOS during a
warm or cold start, and maintained by the CCP.

Offset Contents
00h JMP operation code: vector to the BIOS for a warm start.
Should a RST 0 occur, a warm start will follow.
01h-02h Address of the warm start entry to the BIOS.
03h The current IOBYTE, defining serial device assignments.
04h Default drive and active user code:
Bits 74 contain the active user code,
Bits 3-0 contain the default drive (0 = A, 1 = B, etc.)
05h JMP operation code: vector used to call the BDOS for a service
request.
06-07h Address of the BDOS service request entry point. Used as the
address of the end of storage; subtract 806h to avoid overlaying
the CCP.
08h-37h RST jump vectors, reserved for /O interrupts.
38h-3Fh RST 7 jump vector, reserved for use by debugging tools such as
DDT and SID.
40h-4Fh BIOS work area (typically disk operation variables).
50h-5Bh Reserved by CP/M (MP/M 2: the lengths and addresses of the
passwords from the first two command operands are set up
here.)
5Ch-7Fh Default File Control Block (FCB): set up by CCP to:
5Ch first operand drivecode or 00h
5Dh-64h first operand filename or spaces
65h-67h first operand filetype or spaces
6Ch second operand drivecode or 00h
6Dh-74h second operand filename or spaces
75h-77h second operand filetype or spaces
80h-FFh Default file buffer, set up by CCP to:
80h length of command tail

81h-FFh command tail

"

T T LLLI T T
Warm N G I
00h | IMP fsm',[&[5 [1me { BDOS
08h Restart 1
10h Restart 2
18h Restart 3
20h Restart 4
28h Restart §
30h Restart 6
38h Restart 7
40h
BIOS work area
48h
50h Reserved
s8h |
5Ch [
First operand -
60h
68h 6Ch
St Second operand -
78h
80h | len | command ... l
-I - ”
Féll

FFh

561

File Control Block (FCB) and Directory Entry Map

The FCB is built by a program and passed with many service requests. The Directory
Entry, which differs only in its first byte, is maintained on disk by the BDOS,

Offset Name Contents
00h dr FCB: drive number for /O
00h = use current default drive
01h = drive A, 02h = drive B, etc.
a/u Directory: activity/user code
Oxh = extent entry, file created by user x
1xh = XFCB for file created by user x
20h = directory label entry
E5h = inactive entry
01h-08h Filename in ASCII, left justified and padded with
spaces; attributes coded in bit 7 of each byte.
09h-0Bh Filetype in ASCII, left justified and padded with
spaces; attributes coded in bit 7 of each byte.
0Ch ex Extent number for extents 0-31 (00h-1Fh).
0Dh sl BDOS flags (MP/M 2: FCB checksum).
OEh s2 Extent number for extents over 31.
OFh rc Count of 128-byte records controlled by this extent.
10h-1Fh Data map (list of allocation block numbers).
20h cr (FCB only) Current record of extent, from 00h up to
one less than “rc”.
21h-23h (FCB only) Direct address, from 0 to 65535 (000000h

to 00FFFFh). In MP/M 2, from 000000 to 03FFFF.

562

e

File Control Block, Directory Entry

00h
dr Olh 02h 03h O04h O5Sh 06h 07h O8h 09 OAh OBh OCh ODh OEh OFh
D @ @ (6] T T T T
— Filename — Filetype ex 5] 52 rc
1 | I | 1 I I 1 4 L
alu
00h
10h . . 1Fh
—— Data map
20h 21h 22h 23h @ Bit 7 = File read-only uttribute
T
i D'mi‘cl T @)Bit 7=8YS (no directory display} attribute

1 1

©) Bit 7 = reserved attribute bits

@ Bit 7 = available attribute bits

@ Bit 7 = archive attribute bit

563

Directory Label Map

The Directory Label exists only on disks written by MP/M 2. Itis created and updated by —~
Write Directory Label, service request 100. The label provides identification for a disk,
and controls the enforcement of file passwords. There can be only one Directory Label

564

on a disk.
Offset Contents
00h 20h signals that this is the Directory Label.
01h-08h Disk name in ASCII, left justified and padded with spaces.
09h-0Bh Disk type (or any identification) in ASCIL. left justified and padded
with spaces.
0Ch Flag which determines password enforcement:
Bit 7= 1: Enforce password checks on files that have XFCBs
Bit 6= 1: Timestamp an XFCB when its file is opened.
Bit 5= I: Timestamp an XFCB when its file is closed.
Bit 4 = 1: Create an XFCB whenever a file is created (Make
File, 22).
0Dh-0Fh Reserved, undefined.
10h-17h Encrypted password for the Directory Label.
18h-1Bh Timestamp of label creation. Format is that of system time of day:
date: 16-bit integer, days since 1/1/78
. —
hh: hours in BCD
mm: minutes in BCD
1Ch-1Fh Time stamp of the last update of the label. Format as above.
Directory Label
00h Olh 0Zh 03h O4h O05Sh O6h OTh O08h 0% OAh OBh OCh ODh OEh _OFh
T T T T T | I | I T T
20h —— Disk name —— Disk type Flag* Reserved
i 1 | 1 1 | | | 1 1 |
10h 17h 18h 19h 1Ah 1Bh ICh IDh 1Eh IFh
1 1 T T
Encrypted password Creation time Update time
1 1 ' L
*Flag:
Bit 7 = 1: enforce password checks on files with XFCBs
Bit 6 = 1: perform access (open) time-stamping on XFCBs
Bit 5 = 1: perform update (close) time-stamping on XFCBs
Bit 4 = 1: create an XFCB whenever a file is created

- Extended File Control Block (XFCB) Map

The XFCB exists only on disks written by MP/M 2. It may be built automatically by the
BDOS when a file is created, or explicitely by a program. The XFCB determines

contains the password for its file, and determines when it will be checked.

Bit 7= 1: password check on read-only open, plus . . .
Bit 6 = 1: password check on normal open, plus . . .

Bit 5= 1: password check on delete, rename, write XFCB
Bits 4 . .0: reserved

Offset Contents
00h 1xh, where v is the user code under which the file was created.
01h-08h Filename in ASCII. left justified and padded with spaces.
09h-0Bh Filetype in ASCIL, left justified and padded with spaces.
0Ch Flag that determines password enforcement:
Bit 7C = 1: Check on a read-only open and...
Bit 6 = I: Check on normal open and...
Bit 5 = 1. Check on directory change. Each bit implies all
the bits after it; only one bit needs to be set.
0Dh-0Fh Reserved. undefined.
10h-17h Encrypted password.
18h-1Bh Time stamp of XFCB creation or the last open of the
file. Format is that of system time:
date: 16-bit integer, days since 1/1/78
= hh: hours in BCD
mm: minutes in BCD
1Ch-1Fh Time stamp of the last close of the file. Format as above.
Extended File Control Block
00h Olh OZh 03h 04h OSh O6h O7h 08h 09 OAh OBh OCh ODh OEh OFh
I | I T o I I T T | I
Ixh Filename Filetype Flag* Reserved
| 1 | l it | 1 | 1 | 1 1
10k17Th 18h 19h 1Ah 1Bh ICh 1Dh
T 1 T T
—— Encrypted password — Creation time Access time
date hh , mm date | hh , mm
*Flag:

565

566

Disk Parameter Header (DPH) Map

The address of the DPH is obtained by calling the SELDSK entry of the BIOS, which =

returns its address in the HL register pair.

Offset

Name

Contents

00h

08h

0Ah

0Ch

OEh

XLT

DIRBUF

DPB

CSsv

ALV

Address of parameters used for skew translation. Pass
the address when calling the SECTRAN entry to the
BIOS, unless it is 0000h meaning that the drive does
not use sector skew.

Address of a 128-byte buffer, located in the BIOS,
used for directory I/0O by the BDOS. Only one buffer is
provided: all DPH blocks address it.

Address of the Disk Parameter Block (DPB) that de-
scribes this drive and the disk mounted in it. There will
be a single DPB for each disk type in the system.

Address of an area where the BDOS builds a directory
check vector when it logs in the disk on this drive. The
size of the area is given in the DPB, and may be zero, in
which case this field is ignored.

Address of an area where the BDOS builds an alloca-
tion vector when it logs in the disk on this drive. The
size of the area is determined from the disk capacity,
which appears in the DPB.

00h

02h

08h

0ARh

0Ch

0Eh

Disk Parameter Header (DPH)

* translate
|

XLT: address of skew-translation parameters

BDOS work area
| 1 1

{ dir. buffer
I

{ prB
1

} chk. buffer
1

{ all. vector
1

DIRBUF: address of directory /O buffer

DPB: address of Disk Parameter Block

CSV: address of directory-check area

ALV: address of allocation-vector area

567

568

Disk Parameter Block (DPB) Map

The address of the DPB is obtained with BDOS service request 31, Get Disk Parameters. =

The table is located in the BIOS.

Offset

Name

Contents

00h
02h

03h

04h

05h

07h

09h

0Bh

0Dh

SPT
BSH

BLM

EXM

DSM

DRM

ALn

CKS

OFF

“Sectors™ (128-byte records) per track.

Number of times a record number should be shifted
right to yield its allocation block number (or the base-2
log of the number of records in a block). Get the size of
an allocation block by doubling 128 BSH times.

Mask which, if ANDed with a record number, yields
its index within an allocation block (or BSH minus 1).

Number of times a logical extent number should be
shifted right to yield a physical extent (directory entry)
number (the base-2 log of logical extents per entry).

Highest allocation block number (count of blocks is
one greater). Get disk capacity in records by shifting
DSM+1 left BSH times.

Highest directory entry number (count of entries is one
greater). Shift right twice for number of records in the
directory: shift BSH times for number of blocks.

Initial value for the first 2 bytes of the allocation
vector, with a leading 1-bit for each directory block.

Number of bytes in the directory check area. Either
(DRM+ 1)/4, | byte per directory record, or 0000h to
signify no checking of a fixed disk. MP/M 2: Most
significant bit is set to | to show that this drive’s disk is
fixed, not removable.

Count of reserved tracks, usually 2 or 3 for diskettes,
but may be large when a rigid disk is partitioned into
logical drives.

00h

02h

03h

04h

05h

07h

08h

OBh

ODh

Disk Parameter Block (DPB)

AL@

ALl

SPT:

BSH:

BLM:

EXM:

DSM:

DRM:

AL@. AL1: initial allocation vector

number of records/track

block shift factor

block mask

extent mask

drive capacity

directory size

CKS: check area size

OFF:

reserved tracks

569

CP/NET Configuration Table Map

The address of the configuration table is obtained with NDOS service request 68, Get —
Configuration Table Address. The table is part of the body of the Slave Network I/O
System, loaded below the BDOS by the CPNETLDR command.

Offset Contents

00h Network status byte as kept by SNIOS:
Bit 4 = 1 if system is logged in to any master,

Bit 1 = | if a receive error has occurred,
Bit 0 = 1 if a send error has occurred.
01h Slave's (local system's) network identification num-
ber.
02h-25h Device redirection fields: 02h, 04h, ... 20h describe

drives A, B, ... P respectively. 22h describes CON:,
24h describes LST:. In each 2-byte field:

Byte 0,
Bit 7 = | if device is accessed via net-
work:
Bits 3-0 = number of the remote drive or
console; —

Byte | contains the id of the master handling 1/O.

26h List buffer index, names the next free byte in the buffer
at offset 2Dh.

27h Header of a List Output format message:

FMT = 00h (all header ficlds 1 byte)

DID = master-id from 25h

SID = slave-id from O1h

FNC = 05h (List Qutput)

SIZ = length of data less one (from 26h)

dev = master console number (from 24h)
2Dh List buffer, where output bytes are collected.

570

1.8

ryyi

1ajyng ¥t //
oV ! Yaz
Japeay aFessaul jndno sy Aap ZIS INd | ais aa | LWd
4oz Ydc vt U6z st HLT
Iajjng 1] 13A0 xapu]
T
/ SIST
T L L L L T S I | T T L
- Pt - I2)SEUW - -MP- 000 J \
1 1 ! T
01T TEPYS 9 LOITEFS 9L INOD
|
T T T
SP[a1) UOTIDAITPAL 2DTAA(] d // B | v
|] 1
yrz woz ' Uupd g0 ugo

UOTIRITIUSPI JIOMIDU §, WAISAS [BIO]

(Wa3sAs [r00] 0] TUIPIOIIE) SNIEIS HIOMIIN]

21qe L uoneIndu0) TAN/ID

uaz

YLe

uoz

v

Uzt

4Zo

qio

4oo

—

Reference

Commands

ASCII, HEX

8080, Z80

ASM, MAC

Assembler

BDOS

NDOS

BIOS

MAPS

INDEX

To use, bend the boo

i___;____ y

FOR PART TWO m

Find the index box for the sec- i
tion you want and follow it to
the matching black edge

marker.
__T— —

il

k in half. I~

I_ISBN 0D-03-059

sst ||

—*———————_

.*

